(LIVE WEBSITE FOR A COMPANY)
(S.K. ENGINEERING CO.)- AUTOMATION OF BUSINESS

Submitted by

BHANUJA TREHAN Registration Number :11000153
ISHAN JAIDKA Registration Number :11000236
HARPREET KAUR Registration Number :11002026
RAVINDER KAUR Registration Number: 11001113

Project Group Number CSE094

Course Code CSE445

Under the Guidance of
SHILPA SHARMA MAM- Lecturer

School of Computer Science and Engineering

IENOVELY
IR ROFESSIONAL
IOINIVERSITY

Tranj'/fo:ﬂmi}?_g FEAvcaltion Trﬂnj';[otﬂmﬁ?_g Oriclia

1|Page

DECLARATION

We hereby declare that the project work entitled (“Live Website for a Company :- Automation of
Business ”) is an authentic record of our own work carried out as requirements of Capstone Project
for the award of B.Tech degree in B.TECH C.S.E from Lovely Professional University, Phagwara,
under the guidance of (Ms SHILPA SHARMA Mentor), during January to April 2014.All the
information furnished in this capstone project report is based on our own intensive work and is

genuine.

Project Group Number: CSE094

Name of Student 1: Ishan Jaidka
Registration Number: 11000236

Name of Student 2: Ravinder Kaur

Registration Number: 11001113

Name of Student 3: Bhanuja Trehan

Registration Number: 11000153

Name of Student 4: Harpreet Kaur

Registration Number: 11002026

(Signature of Student 1)
Date:

(Signature of Student 2)
Date:

(Signature of Student 3)
Date:

(Signature of Student 4)

2|Page

Date:

CERTIFICATE

This is to certify that the declaration statement made by this group of students is correct to the best
of my knowledge and belief. They have completed this Capstone Project under my guidance and
supervision. The present work is the result of their original investigation, effort and study. No part of
the work has ever been submitted for any other degree at any University. The Capstone Project is fit
for the submission and partial fulfillment of the conditions for the award of B.Tech degree in B.TECH

C.S.E from Lovely Professional University, Phagwara.

Signature and Name of the Mentor
Designation

School of Computer Science and Engineering,
Lovely Professional University,
Phagwara, Punjab.

Date: 22 Apr. 14

3|Page

ACKNOWLEDGEMENT

We take this opportunity to present our votes of thanks to all those guidepost who really acted
as lightening pillars to enlighten our way throughout this project that has led to successful
and satisfactory completion of this study.

We are really grateful to our mentor Ms. SHILPA SHARMA for providing us with all the
facilities. Valuable time and advice, whole-hearted guidance, sincere cooperation and pains-
taking involvement during the study and in completing the assignment of preparing the said
project within time stipulated.

We are thankful to all those, particularly the various friends, who have been instrumental in
creating proper, healthy and conductive environment and including new and fresh innovative
ideas for us during the project, their help, it would have been extremely difficult for us to
prepare the project in a time bound framework. I would also thank my institution and my
faculty members without whom this project would have been a distant reality.

4|Page

INDEX

SR.NO TOPIC PAGE.NO

2. Profile Of Problem 7-9

3.1 Introduction 9

33 DFD For Present System 9-11

4. Problem Analysis 12-16

4.2 Feasibility Analysis
43 ProjectPln 1416
S. Software Requirement 16-20
Analysis

5.2 General Description 17-18

6. Design 21-67

6.2 Design Notations 32-33

64 Flowchart 38

7. Testing 67-71

7.2 Structural Testing 68-69

8. Implementation 71-74

8.2 Conversion Plan 72

9. Project legacy 75

9.2 Remaining Areas Of Concern 75

10. User Manual 76-79

12. Bibliography 87

5|Page

1. Introduction

“Live Website for a Company” is an Online or Live website of a Company Named :- “S.K.
Engineering Co.” which is basically built to expand the Business of the Company S.K.
Engineering Co. This website is basically to attract customers and know about this Company
that they are dealing with these kind of products. Today, everyone wants that he/she should
have Website so that everyone should know about him/her or about their Business. Today’s
world is totally on Internet. Each and everything is becoming online. On Internet you interact
with new people and get to know about them. Each and every information of a person is
available on Internet today. You get to learn so many things on Internet. Today’s era is and
era of Internet.

This Website basically deals with the Customers those who want to buy Lubricants that are
being supplied by this Company. This Website is developed mainly Focusing on the Business
aspects which simply earns by means of Clicks and Products being supplied by this
Company. Whenever a user wants to buy any Product he/she needs to Login into his/her
account. But if a User is New to this Site he/she needs to Register and have to create his/her
profile for accessing the features of this Website i.e. he/she will be able to buy Products
Online from this Company. To increase the user interactivity this Company has so many
Products which the other competitors in the market do not have and web page is created very
user friendly so that users should not lose their interest while interacting. They supply their
Products to Retailers, Industrialists and many others. They are the Stockists too. They have
already dealt with many big organizations and now they want to expand their business by
using the Website so that the other organizations those who don’t know about them and the
Products being supplied by them should come to know and interact with them for their
business.

So looking into these factors of their Business we have built a Website for “S.K. Engineering

Co.”.

You can visit this Website on the Link :-

www.skengineeringco.in

It is developed with simple technological aspects which include :-
e JavaScript for HTML and CSS as designing languages.
e ASP.NET for database connectivity.
e SQL for databases.

6|Page

e A Database Management (MSSQL SERVER 2008) for storing and retrieving the

queries.
There are mainly three modules which are to be covered in this project and that are :-

¢ Admin Module for Website Management.
e User Module for Website Usage.

¢ Products Management.

Following are the Sub-Modules for main Modules :-
2. Profile Of Problem

S.K. Engineering Co. does not have any Website that is already running Live and they
wanted to Expand their Business of Lubricants/Products they deal with. This can be done

through the best and easy way that is Website on Internet.

Lots of pages are integrated with the advertisements of some other Websites. Websites like
Myntra.com, Jabong.com, etc. deals with the customers online by publishing their products
online on their Website and customers interact with them on their Website for buying
Products and the advertisements of these Websites are being integrated on Social Networking
Websites like Facebook etc. In the similar way the Website of a Company S.K. Engineering
Co. will deal with their Customers online by publishing their Products on
“skengineeringco.in”. Well this is the starting or just an initiation, later on we will advertise it
on some Social Networking Website for its popularity.

Whereas it is completely user oriented site which provides the user a true interactive medium

to the S.K. Engineering Co. Company.

£

LOGO OF “SK ENGINEERING CO.”

7|Page

Objective

The objective of this project is to make a “Live Website for a Company” i.e. for S.K.
Engineering Co. company. In this Website their are different type of Products that are
deployed by this Company. Mainly in this project their will be 9 categories of Products and

further they have Sub-categories.

So we have designed the Website basically for Products that are being deployed by the
Company and for other Products in this field can also be supplied by contacting them. Even if
they are not suppliers of that Product. On the whole the objective of the company is to
Expand their Business as they didn’t have any advertisement even. Online is the best way for

advertisement as well as Expanding the Business.

Scope

The scope of Website decides in which area the Website will get executed and by whom the
Website will get executed. The Website will be installed on Server using IIS Server(Internet
Information Services), it’s a purely Microsoft’s platform. The Users of this website are
mainly the Existing Customers and the New Customers for buying Products that are deployed
by them. The Big Companies have placed themselves in the Market with the help of Websites
as their Business expansion and advertisement. The Company for which the Website has been
designed is working manually for their Customers records. But now the Dynamic Website
has been designed for them i.e. the records of the Customers will be saved at the Backend
into the Database. And further the other industrials, retailers etc. can contact them on their
Website even those who don’t know about them that this Company also exists in the Market.
Even they will get the lead in the Market. Actually the Website is designed according to the
Company’s requirement. Everyone in this modern world needs variety in almost every field
and that’s the reason this Website with the name “skengineeringco.in” has been designed for

the company according to their needs.

3. EXISTING SYSTEM

3.1 Introduction

8|Page

3.1 Introduction

The Company has decided to Expand their Business. Though this Company has Dealt with
Good Companies as their Customer but now they want to further Expand their business. They
basically have their business in Punjab only. And this time they want to Explore this Business

of different Lubricants Supplied by them all over India and Overseas.
3.2 Existing Software

The company didn’t have any website earlier. There was no online advertisement for the
company moreover all the contact and details of the customer were managed manually. There
were less chances for the company to interact with company. The customers also faced the

inconvenience for the interaction earlier.
3.3 DFD for Website

A data flow diagram (DFD) is a graphical representation of the "flow" of data through
an information system, modelling its process aspects. Often they are a preliminary step used
to create an overview of the system which can later be elaborated. DFDs can also be used for
the visualization of data processing (structured design).

A DFD shows what kind of information will be input to and output from the system, where
the data will come from and go to, and where the data will be stored. It does not show
information about the timing of processes, or information about whether processes will

operate in sequence or in parallel.

wiehsite
repasilory
in form of
code

{ : : : i website

Fig. 3.1 CONTEXT LEVEL DIAGRAM

9|Page

details

logis
msermame, passwond confirmatien
vilidation
user login
datahase table
user detaily add details
registrati

I reghstration

Fig. 3.2 LEVEL 1 DFD USER

VIEW DETAILS

VISITOR DATABASE

Fig. 3.3 LEVEL 1 DFD VISITOR

login detadls

Fig. 3.4 LEVEL 1 DFD ADMINISTRATOR

10|Page

quaslity

leedback fle product file

Fig. 3.5 LEVEL 2 DFD USER

view details

meembser
regiviration

sign wp table

Fig.3.6 LEVEL 2 DFD VISITOR

3.4 What’s new in the System to be developed?

This Website is designed according to the requirements of Our Client. In this Website that we
have got something to study is that the Client has asked not to display the Prices of Products
to the Customers as the Prices vary from Customer to Customer. They have different

Customers like Industrialists, retailers, etc. Even after coming online they may get lead from

11| Page

some Industrialists like they may be recommended by some Industries to other Industries and

for them also they have to make different Price list of their Products.

So this is what we need to study in Future for Displaying the Prices of Products to the

Customers that how we can display prices to our Customers. We have to think about it.

4. PROBLEM ANAYSIS

4.1 Product defination
It is a website developed using different Web Technologies together such as HTML, CSS,
JavaScript and asp.net which is used to automate the process of business. It is different from

other website sites in terms of efficiency, security and interactivity of the user.
Efficiency

If we talk about efficiency of site we meant by the loading time of the site. Actually what is
done when a user login and clicks products user request is taken to the server and some
temporary files are being downloaded in the users system in cache . If we talk about our
website the efficiency factor is very high if user has limited connectivity as because of the
website modules are simpler one and does not require a separate caching memory for the
temporary storage of the file that’s why they get loaded very easily and very fast thus
preventing the users time and space. Registration is all free of cost but requires only a user’s
account and all the mandatory information of the user is kept safe and also the website is
free of malware and viruses environment. CSS gives more control over the look and layout
of Internet documents. It allows site-wide control of many elements such as font styles, page

colors, lists, line spacing, margins, indents, images, etc.
Security

Security for online gaming is a very essential factor that evaluates the sites performance and
growing factor because if a site is not secure than no user open it as thinking why to take the
risk of letting the system to be get crashed. As a website’s security level is measured in terms
of free from malware and viruses which are generated during traffic patterns followed during

connections during errors and bugs remained in the coding part of the software.

12| Page

Interactivity

If we talk about the interactivity we talk about user’s interest level in the particular field.
We are going to provide a very user friendly environment so that user interacts with every

corner of the site.

4.2 Feasibility analysis

The main objective of feasibility study is to test the technical, operational and economical
feasibility of developing a computer system. All projects are feasible, giving unlimited
resources and infinite time. It is both necessary and prudent to evaluate the feasibility of the
project at the system study phase itself.
The feasibility study conducted for this project involves:

e Technical feasibility

e Operational feasibility

¢ Economical Feasibility

Explanation is as follows:

Technical Feasibility:

The considerations that are normally associated with technical feasibility include
development risk, resources availability and technology. Management provides latest

hardware and software facilities for the successful completion of the project.

Operational Feasibility:

In the manual system, it is very difficult to maintain huge amount of pricing information of
products. The development of the new system was started because of the requirements put
forward by the management of the concerned department. So it is sure that the system
development is operationally feasible.

This includes three major factors that are described below:-

Cost of Hardware and | Cost of software to be acquired to build and run the

Software product is a onetime cost.

Benefits in reduced cost and | Savings will be made by reduction of present system

error expenses, time saving and increased accuracy.

13| Page

. Future cost reduction in from of reduction in the number
Cost avoidance o)
of administrative staff needed and manual records

maintains in organization. Rise in cost will be avoided.

Economic Feasibility:

Here the development cost is evaluated by weighing it against the ultimate benefits derived
from the new system. The benefit accrued from the new system is more than the cost
involved in its development as everything is related to money.

The proposed system is economically feasible because the cost involved in purchasing that
hardware and the software are within approachable. The operating environment costs are
marginal .The less time involved also helped in its economical feasibility.

Feasibility study is a test of system proposal according to its workability, impact on the
organization, ability to meet user needs, and effective use of resources.

The objective of a feasibility study is not to solve the problem but to acquire a sense of its
scope. During the study, the problem definition is crystallized and aspect of the problem to be
included in the system is determined. Consequently, cost and benefits are estimated with the

greater accuracy at this stage.
4.3 Project plan

Project is divided into three different categories (modules) to make it the most efficient site.

Phase 1 includes the designing part of the website which includes that how the website will
look like, what menu function are there in the website, the structural overview of the website
So that the website is designed to attract the user and also the interactivity of the user is also

kept in mind while designing the website.

Phase 2 includes the coding part of the website; the coding is done in a very user friendly
environment so that it can support any of the web interface application like browser i.e. the
coding is like that it can easily be run on any of the browser used by the user and also the
coding is free of errors and bugs so that they are fully assured and free of malware and

viruses that are generated during the run time phase.

14| Page

Phase 3 includes the data flow procedure during the connectivity of the user with the server
while logging with a valid user id, loading of the webpage. This phase is very important in
terms of accessing the database with full security user is providing his/her information which
is being saved in the database so no one will have access to that information so that user’s

privacy option is maintained.

A Gantt chart, commonly used in project management, is one of the most popular and useful
ways of showing activities (tasks or events) displayed against time. On the left of the chart is
a list of the activities and along the top is a suitable time scale. Each activity is represented by
a bar; the position and length of the bar reflects the start date, duration and end date of the

activity. This allows you to see at a glance:

e What the various activities are

e When each activity begins and ends

e How long each activity is scheduled to last

e Where activities overlap with other activities, and by how much

e The start and end date of the whole project

15| Page

GANNT CHAT

FEB | FEB | FEB | FEB \MARCHMARCH MARCH MARCH |APRIL |APRIL |APRIL |APRIL

1 stweek |2nd week | 3rd week [4th week| 1st week 2nd week| 3rd week |4th week |1stweek |2nd week [3rd week th week

SRS

Synopsis

DD & ER doc

start coding

MIE

70% code over

Mid term report

Coding part over

Testing

start doing work op
final report
continue

final report submif,

5. SOFTWARE REQUIREMENT ANALYSIS
5.1 Introduction

This project is basically a DYNAMIC WEBSITE that is to be designed for a company who

wants to expand their business online through the website. The name of the Company for

which this website is going to be designed is S.K.ENGINEERING CO. This website will be

linked to database and further records and orders of the customers will be managed on the
database. User interface for the customers will be provided for their orders and also they

can track their order. The company deals with the different LUBRICANTS.

16| Page

This document is basically about how the website will be designed for the company to
expand their business of different kinds of LUBRICANTS being manufactured by them. There
are different categories of LUBRICANTS like hydraulic, cutting, quenching, crank case oil etc.
we need different things to design a website. This website will be designed on .NET

FRAMEWORK. The language that will be used is ASP.NET.

5.2 General Description
Product Perspective:

Following is the context of website. Comparison b/w the Traditional system and the new system can

also be cleared through the system models.

Fig. 5.2.1 Working of Website
Functionalities: This website will have following functionalities:-

1) Administrators Management

2) Users Management

Since this is an open source website. There are various reasons why should anyone use this
website. First it’s a free of cost website so that anyone can join. Second is a easy and reliable
website that is very unique in its category where user can use it on any web browser and or
any network interface. And third due to its open source user can take help from online
assistance. The major components of the system as noted in the previous section are the

website client window and the website Server window.

17 |Page

(a)The Website Client is a simple client-window (browser) form that communicates with the
active website Server and its purpose is to run the game sessions that were selected and prints

the results.

(b)The Website Server is a game and information database server that can be enabled in
server mode, as long as is in that state it opens ports to accept website Client connections
session statistics such as who is connected at the present time and which game is being
selected for playing, saves this information in log files and load the game in the browser

window.
Product Features
The major features of our website are:

Cross platform support: Offers operating support for most of the known and commercial

operating systems
Language support: Offers multiple language support for global use.

TCP or Connectionless support: Clients can connect to the server using a TCP connection

or connectionless using a removable disk that loads the game from it.
Design and Implementation Constraints

This website is created using PHP,JSP,CSS programming languages and Scripting languages
with HTML and a Database server which is used for storing the files and related
information’s. So a minimum PC having at least 64mb of RAM and CPU over 400 MHz is
required to run the website with good speed. For the connection stream TCP-IP is used as it’s
the common gateway for internet applications. A good internet connection is must for
running the website and playing games very efficiently without any special requirements of

the special hardware.
Assumptions and Dependencies

For creating the website the simple HTML coding with some scripting languages is done for
providing it to be supported on various browsers and games are coded in programming
languages that is JavaScript. We assume that user is not interested in knowing that how they

were coded at the time of their development.

18| Page

5.3 Specific Requirements

Functionality

This section is organized by the process and features encapsulated in the website. It includes
the inputs from the user, processing it accordingly and generating output to the user’s

window (browser).

Maintenance

The data of the products and the users profile information is maintained in the database.

Security Considerations

The website administrator will ensure the privacy of user profile status and information and
ensure full control over its execution, so that alteration of scheduling criteria or actual

resource allocation is not possible without administrator authority.

Software Requirements

OPERATING SYSTEM : WINDOWS 7

BROWSER : ANY HTTP BROWSER
FRONT END : ASP.NET 4.0
DATABASE LAYER : SQL SERVER 2008
WEB SERVER IIS

SERVER SIDE SCRIPTING : C#NET

CLIENT SIDE SCRIPTING : JAVA SCRIPT

CONNECTION : TCP /1P

PROTOCOL : HTTP, SMTP

19|Page

Component
Proce¢ssor

RAM

Disk

Drivie

Display

Network

e 32-Bit Systems: Computer with Intel or compatible 1GHz or faster processor (2 GHz

or faster is recommended. Only a single processor is supported)

e 64-Bit Systems: 1.4 GHz or higher processor (2 GHz or faster is recommended. Only

a single processor is supported)

e Minimum of 512 MB of RAM (1 GB or more is recommended)

¢ 1 GB of free hard disk space

Hardware Requirements

Minimum
2.5 gigahertz (GHz)

1 gigabyte (GB)

NTES file system—formatted partition
with a minimum of 3 GB of free space

DVD drive

1024 x 768

56 kilobits per second (Kbps) connection
between client computers and server

20|Page

Recommended
Dual processors that are each 3 GHz or faster

2GB

NTES file system—formatted partition with 3 GB
of free space plus adequate free space for website

DVD drive or the source copied to a local or
network accessible

1024 x 768 or higher resolution monitor

56 Kbps or faster connection between client side
and server

6. DESIGN
6.1 System Design

System design is the solution to the creation of a new system. This phase is composed of
several systems. This phase focuses on the detailed implementation of the feasible system. It
emphasis on translating design specifications to performance specification.

System design has two phases of development logical and physical design.

During logical design phase the analyst describes inputs (sources), outputs (destinations),
databases (data sores) and procedures (data flows) all in a format that meats the uses
requirements. The analyst also specifies the user needs and at a level that virtually determines
the information flow into and out of the system and the data resources. Here the logical
design is done through data flow diagrams and database design.

The physical design is followed by physical design or coding. Physical design produces the
working system by defining the design specifications, which tell the programmers exactly
what the candidate system must do. The programmers write the necessary programs that
accept input from the user, perform necessary processing on accepted data through call and

produce the required report on a hard copy or display it on the screen.
Front End

At the front end we have Browser as a User Interface to Interact with different Websites.
Everything is clearly shown in figure below. Everything gets converted into HTML tags
when we view the source of page in the Browser. What we write or create business logics in

the middle ware that everything gets converted into HTML.

JavaScript, VBScript, jQuery, CSS, HTMI are client-side scripts. These run at the Client side
only and in the Browser. These Scripts are compiled by the Interpreter on the Browser side.

Browser has an in-built Interpreter.
Middle End or Middle Ware

At the Middle Ware we use Business Logics in which we use different technologies to
develop Websites like ASP.NET, PHP, RUBYONRAILS etc. These above listed are Server-

side scripts, they run only on Server-side and cannot run on Client-side.

21| Page

Dynamic Websites can be created with the following technologies :- JavaScript, HTML,
ASP, ASP.NET, CSS, PHP, etc.

ASP.NET is a Microsoft’s platform for creating Dynamic Websites. Before ASP.NET, we
had ASP working at the background to develop dynamic Webpages but ASP had lot many

issues with regards to Web Development.

Parallel to Visual Studio there was development of JAVA.

ASP.net 4.0

ASP.NET 4.0 is not just a simple upgrade or the latest version of ASP. ASP.NET 4.0
combines unprecedented developer productivity with performance, reliability, and
deployment. ASP.NET redesigns the whole process. It's still easy to grasp for new comers but

it provides many new ways of managing projects. Below are the features: .

Easy Programming Model

ASP.NET 4.0 makes building real world Web applications dramatically easier. ASP.NET
server controls enable an HTML-like style of declarative programming that let you build
great pages with far less code than with classic ASP. Displaying data, validating user input,
and uploading files are all amazingly easy. Best of all, ASP.NET pages work in all browsers
including Netscape, Opera, AOL, and Internet Explorer.

Flexible Language Options

ASP.NET 4.0 lets you leverage your current programming language skills. Unlike classic
ASP, which supports only interpreted VBScript and J Script, ASP.NET now supports more
than 25 .NET languages (built-in support for VB.NET, C#, and JScript.NET), giving us

unprecedented flexibility in the choice of language.

Great Tool Support

We can harness the full power of ASP.NET 4.0 using any text editor, even Notepad. But
Visual Studio .NET adds the productivity of Visual Basic-style development to the Web.
Now we can visually design ASP.NET Web Forms using familiar drag-drop-double click
techniques, and enjoy full-fledged code support including statement completion and color-

coding. VS.NET also provides integrated support for debugging and deploying ASP.NET

22| Page

Web applications. The Enterprise versions of Visual Studio .NET deliver life-cycle features
to help organizations plan, analyse, design, build, test, and coordinate teams that develop
ASP.NET Web applications. These include UML class modelling, database modelling
(conceptual, logical, and physical models), testing tools (functional, performance and
scalability), and enterprise frameworks and templates, all available within the integrated

Visual Studio .NET environment.
Rich Class Framework

Application features that used to be hard to implement, or required a 3rd-party component,
can now be added in just a few lines of code using the .NET Framework. The .NET
Framework offers over 4500 classes that encapsulate rich functionality like XML, data
access, file upload, regular expressions, image generation, performance monitoring and
logging, transactions, message queuing, SMTP mail, and much more. With Improved
Performance and Scalability ASP.NET4.0 lets we use serve more users with the same

hardware.

Compiled execution

ASP.NET 4.0 is much faster than previous versions, while preserving the "just hit save"
update model of ASP. However, no explicit compile step is required. ASP.NET4.0 will
automatically detect any changes, dynamically compile the files if needed, and store the
compiled results to reuse for subsequent requests. Dynamic compilation ensures that the

application is always up to date, and compiled execution makes it fast.
Rich output caching

ASP.NET 4.0 output caching can dramatically improve the performance and scalability of the
application. When output caching is enabled on a page, ASP.NET executes the page just

once, and saves the result in memory in addition to sending it to the user. When another user
requests the same page, ASP.NET 4.0 serves the cached result from memory without re-
executing the page. Output caching is configurable, and can be used to cache individual
regions or an entire page. Output caching can dramatically improve the performance of data-

driven pages by eliminating the need to query the database on every request.

23| Page

Enhanced Reliability

ASP.NET 4.0 ensures that the application is always available to the users.

Memory Leak, Dead Lock and Crash Protection

ASP.NET 4.0 automatically detects and recovers from errors like deadlocks and memory
leaks to ensure our application is always available to our users. For example, say that our
application has a small memory leak, and that after a week the leak has tied up a significant
percentage of our server's virtual memory. ASP.NET 4.0 will detect this condition,
automatically start up another copy of the ASP.NET 4.0 worker process, and direct all new
requests to the new process. Once the old process has finished processing its pending
requests, it is gracefully disposed and the leaked memory is released. Automatically, without
administrator intervention or any interruption of service, ASP.NE 4.0 T has recovered from

the error.

Easy Deployment

ASP.NET 4.0 takes the pain out of deploying server applications. "No touch" application
deployment. ASP.NET 4.0 dramatically simplifies installation of our application. With
ASP.NET, 4.0 we can deploy an entire application as easily as an HTML page, just copy it to

the server. configuration settings are stored in an XML file within the application.

Dynamic update of running application

ASP.NET 4.0 now lets we update compiled components without restarting the web server.
In the past with classic COM components, the developer would have to restart the web server
each time he deployed an update. With ASP.NET, we simply copy the component over the
existing DLL, ASP.NET will automatically detect the change and start using the new code.

Middle End - c#.net

In brief, C#.NET a next generation of ASP (Active Server Pages) introduced by Microsoft.
Similar to previous server-side scripting technologies, C#.NET allows us to build powerful,
reliable, and scalable distributed applications. C#NET is based on the Microsoft

NET framework and uses the .NET features and tools to develop Web applications and Web

services.

24| Page

Even though C#NET sounds like ASP and syntaxes are compatible with ASP but C#NET is
much more than that. It provides many features and tools, which let you develop more
reliable and scalable, Web applications and Web services in less time and resources. Since

C#.NET is a compiled. NET-based environment; we can use any .NET supported languages,

including VB.NET, C#, JScript.NET, and VBScript.NET to develop C#NET applications.

Back End - SQL Server 2008

At the back end we have Database. Everything gets stored into the Database. Dynamic
Website is basically a Game that is totally based on Database. At the back end we have used
Microsoft SQL Server 2008.

Dynamic websites normally interacts with Database at the back end and then display all the
information on the Specific pages. The same concept is used on Gmail, Hotmail, Facebook,

Twitter, etc.

While Website gets loaded onto the Browser everything gets converted into HTML tags and
this all is done by the Browser itself. The Website we have developed is basically 3-Tier
because it has 1.) User Interface, 2.) Middle Ware, 3.) Back End(Database)

Microsoft SQL Server 2008 Management Studio Express is a free, integrated environment for
accessing, configuring, managing, administering, and developing all components of SQL
Server, as well as combining a broad group of graphical tools and rich script editors that
provide access to SQL Server to developers and administrators of all skill levels.
User-defined functions

SQL 2008 Server has always provided the ability to store and execute SQL code routines via
stored procedures. In addition, SQL Server has always supplied a number of built-in
functions. Functions can be used almost anywhere an expression can be specified in a query.
This was

one of the shortcomings of stored procedures—they couldn't be used inline in queries in
select lists, where clauses, and so on. Perhaps we want to write a routine to calculate the last
business day of the month. With a stored procedure, we have to exec the procedure, passing
in the current month as a parameter and returning the value into an output variable, and then
use the variable in our queries. If only we could write our own function that we could use

directly in the query just like a system function. In SQL Server 2000, we have.

25| Page

Indexed views

Views are often used to simplify complex queries, and they can contain joins and aggregate
functions. However, in the past, queries against views were resolved to queries against the
underlying base tables, and any aggregates were recalculated each time we ran a query
against the view. In SQL Server 2000 Enterprise or Developer Edition, we can define indexes
on views to improve query performance against the view. When creating an index on a view,
the result set of the view is stored and indexed in the database. Existing applications can take

advantage of the performance improvements without needing to be modified.

Distributed partitioned views

SQL Server provided the ability to create partitioned views using the UNION ALL statement
in a view definition. It was limited, however, in that all the tables had to reside within the
same SQL Server where the view was defined. SQL Server 2008 expands the ability to create
partitioned views by allowing us to horizontally partition tables across multiple SQL Servers.
The feature helps to scale out one database server to multiple database servers, while making
the data appear as if it comes from a single table on a single SQL Server. In addition,
partitioned views can now be updated.

Text in row data

In previous versions of SQL Server, text and image data was always stored on a separate
page chain from where the actual data row resided. The data row contained only a pointer to
the text or image page chain, regardless of the size of the text or image data. SQL Server
2008 provides a new text in row table option that allows small text and image data values to
be placed directly in the data row, instead of requiring a separate data page. This can reduce
the amount of space required to store small text and image data values, as well as reduce the

amount of I/O required to retrieve rows containing small text and image data values.

Cascading constraints

In previous versions of SQL Server, referential integrity (RI) constraints were restrictive
only. If an insert, updates, or delete operation violated referential integrity, it was aborted
with an error message. SQL Server 2008 provides the ability to specify the action to take
when a column referenced by a foreign key constraint is updated or deleted. We can still

abort the update or delete if related foreign key records exist by specifying the NO ACTION

26|Page

option, or we can specify the new CASCADE option, which will cascade the update or delete

operation to the related foreign key records.
Multiple SQL server instances

Previous versions of SQL Server supported the running of only a single instance of SQL
Server at a time on a computer. Running multiple instances or multiple versions of SQL
Server required switching back and forth between the different instances, requiring changes
in the Windows registry.

SQL Server 2000 provides support for running multiple instances of SQL Server on the same
system. This allows us to simultaneously run one instance of SQL Server 6.5 or 7.0 along
with one or more instances of SQL Server 2008. Each SQL Server instance runs
independently of the others and has its own set of system and user databases, security
configuration, and so on. Applications can connect to the different instances in the same way

they connect to different SQL Servers on different machines.
XMLsupport

Extensible Markup Language has become a standard in Web-related programming to
describe the contents of a set of data and how the data should be output or displayed on a
Web page. XML, like HTML, is derived from the Standard Generalize Markup Language
(SGML). When linking a Web application to SQL Server, a translation needs to take place
from the result set returned from SQL Server to a format that can be understood and
displayed by a Web application. Previously, this translation needed to be done in a client

application.
Log shipping

The Enterprise Edition of SQL Server 2008 now supports log shipping, which we can use to
copy and load transaction log backups from one database to one or more databases on a
constant basis. This allows you to have a primary read/write database with one or more read-
only copies of the database that are kept synchronized by restoring the logs from the primary
database. The destination database can be used as a warm standby for the primary database,
for which we can switch users over in the event of a primary database failure. Additionally,
log shipping provides a way to offload read-only query processing from the primary database

to the destination database.

27| Page

ADO.Net

Most applications need data access at one point of time making it a crucial component when
working with applications. Data access is making the application interact with a database,
where all the data is stored. Different applications have different requirements for database
access. ASP.NET uses ADO .NET (Active X Data Object) as it's data access and

manipulation protocol which also enables us to work with data on the Internet.

ADO.NET Data Architecture

Data Access in ADO.NET relies on two components: Data Set and Data Provider.

1. Data Set

The dataset is a disconnected, in-memory representation of data. It can be considered as a
local copy of the relevant portions of the database. The Data Set is persisted in memory and
the data in it can be manipulated and updated independent of the database. When the use of
this Data Set is finished, changes can be made back to the central database for updating. The
data in Data Set can be loaded from any valid data source like Microsoft SQL server

database, an Oracle database or from a Microsoft Access database.

2. Data Provider

The Data Provider is responsible for providing and maintaining the connection to the
database. A Data Provider is a set of related components that work together to provide data in
an efficient and performance driven manner. The .NET Framework currently comes with two
Data Providers: the SQL Data Provider which is designed only to work with Microsoft's
SQL Server 7.0 or later and the OleDb Data Provider which allows us to connect to other
types of databases like Access and Oracle. Each Data Provider consists of the following
component classes:

The Connection object which provides a connection to the database. The Command object
which is used to execute a command. The Data Reader object which provides a forward-only,
read only, connected record set. The DataAdapter object which populates a disconnected

DataSet with data and performs update.

28| Page

MET D.ata Provider D ataSet

D ataTableCollecton

Connection DataAdapter

Transaction | B[SelectCommand |
Comm .and [InsertCommand |

| UpdateCommand |
D ataReader |DE|EtECummand | -

0 ataTable
| D ataRowCollection |

| o atacolumnCollection |

|C|:|'| strasn tCollection |

I l D ataRelation ollactan |

D atatsase
Fig. 6.1 Architectural Model

Data access with ADO.NET can be summarized as follows:
A connection object establishes the connection for the application with the database. The
command object provides direct execution of the command to the database. If the command
returns more than a single value, the command object returns a Data Reader to provide the
data. Alternatively, the Data Adapter can be used to fill the Dataset object. The database can
be updated using the command object or the Data Adapter.

Component classes that make up the Data Providers
1. The Connection Object

The Connection object creates the connection to the database. Microsoft Visual Studio

.NET provides two types of Connection classes: the SqlConnection object, which is designed
specifically to connect to Microsoft SQL Server 7.0 or later, and the OleDbConnection
object, which can provide connections to a wide range of database types like Microsoft
Access and Oracle. The Connection object contains all of the information required to open a

connection to the database.
2. The Command Object

The Command object is represented by two corresponding classes: SqlCommand and OleDb
Command. Command objects are used to execute commands to a database across a data
connection. The Command objects can be used to execute stored procedures on the database,

SQL commands, or return complete tables directly.

29| Page

3. The DataReader Object

The DataReader object provides a forward-only, read-only, connected stream recordset from
a database. Unlike other components of the Data Provider, DataReader objects cannot be
directly instantiated. Rather, the DataReader is returned as the result of the Command object's
ExecuteReader method. The SqlCommand.ExecuteReader method returns a SqlDataReader
object, and the OleDbCommand.ExecuteReader method returns an OleDbDataReader object.
The DataReader can provide rows of data directly to application logic when we do not need

to keep the data cached in memory.
4. The DataAdapter Object

The DataAdapter is the class at the core of ADO .NET's disconnected data access. It is
essentially the middleman facilitating all communication between the database and a DataSet.
The DataAdapter is used either to fill a DataTable or DataSet with data from the database
with its Fill method. After the memory-resident data has been manipulated, the DataAdapter
can commit the changes to the database by calling the Update method. The DataAdapter
provides four properties that represent database commands:

SelectCommand, InsertCommand, DeleteCommand and UpdateCommand

When the Update method is called, changes in the DataSet are copied back to the database

and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is executed

N-tier
Classical Two-tier Three-tier (Distributed three-tier)
Presentation Layer Presentation Layer Presentation Layer Presentation Layer
Worktlow Layer Presentation
Business Rules Business Rules Tier
B R
Data Access Layer Workflow Layer T].
% Bounaary 4 ~ Business Logic
L] { - v ~ Tier
B Business Logic Layer = | Business Logic Layer
Process g . = :
Boundary . [}
¥ 3 _ :; :
i " Data Access
Data Access Layer Data Access Layer | | Data Access Layer | Ti
Process - - = 8 er
Boundary [
Data Soumej Data Source. Data Soume'i Data Source

Fig. 6.2 The Architectural Model

30|Page

Phase 1: Classic

In the classic model, note how all layers are held within the application itself. This
architecture would be very awkward to maintain in a large-scale environment unless extreme
care was taken to fully encapsulate or modularize the code. Because Phase 1 of the
Duwamish Books sample focuses on a small retail operation, this type of design is perfectly
acceptable. It's easy to develop and, in the limited environment of a single retail outlet, easy
to maintain.

In Phase 1, we deliver the basic functionality and documentation of the code and design

issues.
Phase 2: Two-tier

Phase 2 moves to a two-tier design, as we break out the data access code into its own layer.
By breaking out this layer, we make multiple-user access to the data much easier to work
with. The developer does not have to worry about record locking, or shared data, because all

data access is encapsulated and controlled within the new tier.
Phase 3: Logical three-tier and physical three-tier

The business rules layer contains not only rules that determine what to do with data, but also
how and when to do it. For an application to become scalable, it is often necessary to split the
business rules layer into two separate layers: the client-side business logic, which we call
workflow, and the server-side business logic. Although we describe these layers as client and
server—side, the actual physical implementations can vary. Generally, workflow rules govern
user input and other processes on the client, while business logic controls the manipulation

and flow of data on the server.

Phase 3 of the Duwamish Books sample breaks out the business logic into a COM[]
component to create a logical three-tier application. Our second step in creating a three-tier
application is to provide a physical implementation of the architecture. To distribute the
application across a number of computers, we implement Microsoft Transaction Server in
Phase 3.5. The application becomes easier to maintain and distribute, as a change to the
business rules affects a smaller component, not the entire application. This involves some
fairly lengthy analysis because the business rules in Phase 1 were deliberately not

encapsulated.

31|Page

6.2 DESIGN NOTATIONS

Entity Relationship Diagrams (ERDs) illustrate the logical structure of databases.

|

Fig. 6.2.1 ER Diagralm of Database

Entity

An entity is an object or concept about which you want to store information.

Entity

Key attribute

A key attribute is the unique, distinguishing characteristic of the entity.

Multi-valued attribute

A multi-valued attribute can have more than one value.

32|Page

Relationships

Relationships illustrate how two entities share information in the database structure.

Relationships

Cardinality

Cardinality specifies how many instances of an entity relate to one instance of another entity.

Recursive relationship
In some cases, entities can be self-linked.

6.3 DETAILED DESIGN
DFD

A data flow diagram (DFD) is a graphical representation of the "flow" of data through
an information system, modelling its process aspects. Often they are a preliminary step used
to create an overview of the system which can later be elaborated. DFDs can also be used for
the visualization of data processing (structured design).

A DFD shows what kind of information will be input to and output from the system, where
the data will come from and go to, and where the data will be stored. It does not show
information about the timing of processes, or information about whether processes will

operate in sequence or in parallel

33|Page

i wser details

* view detalls

view defails

Siilem sdmimisirator

visitor ‘ view detalls

3|Page

Fig. 6.3.1 Context Level Diagram

details

logls
msermame,passwond confirmstion
validation
uier login
ditabase Labbe
nsr details adld detaily
regisirat
registration
Fig. 6.3.2 LEVEL 1 DFD USER
DETAIL

VISITOR

VIEW DETAILS

DATABASE

Fig. 6.3.3 LEVEL 1 DFD VISITOR

35|Page

login details

verificanions &

visitor

Fig. 6.3.4 LEVEL 1 DFD ADMINISTRATOR

quamlity

Teedback fle product file

Fig. 6.3.5 LEVEL2 DFD USER

Vinifor

view details

MM EsET
regisiration

I sign mp table

Fig.6.3.6 LEVEL 2 DFD VISITOR

ER DIAGRAMS
USE CASE VIEW
Actor Client and system
Goal Register, Place , review & cancel order, specify requirements
Steps To be logged in
Place an order or view the website or do enquiry
Fill details
Confirm action
Logs out
Result The system send the email or message for the confirmation
Actor owner and system
Goal Review the orders placed, provide the new information , schemes and offers, answer the
queries of the clients
Steps To be logged in
Review the customer details
Answer the queries if needed
Give confirmation
Logs out
Result Can maintain the CRM . can interact with the clients
Actor Administrator & system
Goal Do updations, managing profiles, handling database
Steps No need to login
Result Result into efficient handling of website.

36| Page

client

view products and company details

place or cancel an order

confim action

system

ask query if neaded

37| Page

Fig. 6.3.7 Interaction of Client with System

6.4 FLOWCHARTS

Buyer

A, Updt,

—H prodct

Remmie [

Sohct

il
Cart

Display
Froduct

Product

38| Page

Confrm
Ortler

I

Admi

Gererate
Raports

e

Cagy

Camgory

Ordar Datal

Fig. 6.4.1 Flowchart of Website

gy
gy

6.5 SERVER SIDE CODING

MASTERPAGE

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class MasterPage2 : System.Web.UI.MasterPage
{

protected void Page_Load(object sender, EventArgs e)
{
// We check to see that this page loads by a new request for the page so that
this code does not
// run when there is a postback like when a button is clicked.
if (!Page.IsPostBack)
{
// We check to see if there exists an FormAuthenticationTicket for the
user.
// Hide the "SigninPanel" and show the "CustomerPanel" if the user is
signed in
// on this website.
if (Request.IsAuthenticated == true)
{
// Get the FormsAuthentication ticket.
FormsIdentity id = (FormsIdentity)Page.User.Identity;
FormsAuthenticationTicket ticket = id.Ticket;

// This is information from the FormsAuthenticationTicket
1blUserName.Text = ticket.Name;

// Set visibilities for panels
SigninPanel.Visible = false;
CustomerPanel.Visible = true;
SmallCartPanel.Visible = true;

// Call subroutine to load the small shopping cart
LoadSmallCart();

}

protected void cmdLogin_Click(object sender, System.EventArgs e)

{
// This code will get executed when the "Sign in" button is clicked and the
first thing that is
// done is to check if the username and password corresponds to a user in the
"Customers" table.
// We are sending the username and password to the "ValidateUser" function in
the If-statement

39|Page

// and will then return an answer from this function, se this function after
this subroutine.
if (ValidateUser(LoginUserName.Text, LoginUserPass.Text))

{

// We declare three variables that will be used to create a cookie for the
signed in user.

FormsAuthenticationTicket ticket = default(FormsAuthenticationTicket);

string cookie = null;

HttpCookie httpCookie = default(HttpCookie);

// The FormsAuthenticationTicket is filled with data for version, name,
issue date,

// expiration date, if the cookie are persistent or not, user data and
cookie path.

ticket = new FormsAuthenticationTicket(1l, LoginUserName.Text,
DateTime.Now, DateTime.Now.AddMinutes(100), chkPersistCookie.Checked,
HiddenCustomerID.Value, "MyPage");

// The cookie is set to the encrypted ticket
cookie = FormsAuthentication.Encrypt(ticket);

// The httpCookie gets a name and the value from the cookie
httpCookie = new HttpCookie(FormsAuthentication.FormsCookieName, cookie);

// We set the expiration date for the httpCookie if the ticket is
persistent. A HttpCookie

// without an expire date will expire when the browser is closed.

if (chkPersistCookie.Checked == true)

{
}

// Set the cookie path.
httpCookie.Path = FormsAuthentication.FormsCookiePath;

httpCookie.Expires = ticket.Expiration;

// Add the httpCookie.
Response.Cookies.Add(httpCookie);

// Redirect the user to the Default page so that the right panels are

visible
Response.Redirect("Default.aspx");
}
else
{
1blMessage.Text = "* Incorrect password or e-mail";
¥
¥

private bool ValidateUser(string userName, string passWord)

{

// This is a check that is done for the entered user name, i has to be between
1 and 80

// characters. If this check is false this function will return a "False"
statement and the

// code below will not be executed. The "|" sign stands for "Or".
if ((userName.Length == @) | (userName.Length > 80))
{

System.Diagnostics.Trace.WriteLine("[ValidateUser] Input validation of
userName failed.");

40| Page

return false;

}

// This is a check that is done for the entered password, i has to be between
1 and 25

// characters. If this check is false this function will return a "False"
statement and the

// code below will not be executed. The sign stands for "Or".

if ((passWord.Length == @) | (passWord.Length > 25))

System.Diagnostics.Trace.WriteLine("[ValidateUser] Input validation of
passWord failed.");
return false;
}

// We receive the userName and passWord as variables when this function is
called and we

// create the variable "lookupPassword" as a string to store the password that
is selected from

// the database. The hidden field "HiddenCustomer" that should store the
customer id of the customer

// are set to Blank at the start. The passWord that is passed to this function
is encrypted with SHA1l

// because the password that is stored in the table "Customers" are encrypted
with SHA1 and therefore

// have to do this encryption to compare the entered password with the stored
password in the database.

string lookupPassword = null;

HiddenCustomerID.Value = string.Empty;

// Encrypt the password.
string passwordHash =
FormsAuthentication.HashPasswordForStoringInConfigFile(passWord, "SHA1");

// This code is used to select the password and customer id from the
"Customers" table according to
// the supplied username in the "sign in form".

// Declare variables for a connection string and a SELECT statement.

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string SelectUser = "SELECT CustomerID, Password FROM Customers WHERE Username
= @Username";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SglConnection(ConnString))

{

// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(SelectUser, cn);

// Create a SqlDataReader.
SqlDataReader reader = null;

// Add parameters.
cmd. Parameters.AddWithvValue("@Username”, LoginUserName.Text);

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the connection.

41| Page

cn.Open();

// We use SqglDataReader and just want to select one single row. The
CustomerID are

// supplied to the hidden field "HiddenCustomerID" and the Password
are supplied to the

// "lookupPassword" string.

// Execute the SELECT statement and fill the reader with data.
reader = cmd.ExecuteReader(CommandBehavior.SingleRow);

// Loop the reader.
while (reader.Read())

{
HiddenCustomerID.Value = reader["CustomerID"].ToString();
lookupPassword = reader["Password"].ToString();
¥
}
catch (Exception ex)
{
System.Diagnostics.Trace.WriteLine("[ValidateUser] Exception " +
ex.Message);
by
finally
{
// Dispose the SqlCommand.
cmd.Dispose();
// Close the reader.
if (reader != null)
reader.Close();
}

}

// If no password is found this function will return false.
if (lookupPassword == null)
{
// You could write failed login attempts here to the event log for
additional security.
return false;

}

// Compare lookupPassword and passwordHash by using a case-sensitive
comparison.
return (string.Compare(lookupPassword, passwordHash, false) == 9);

}
protected void btnSignOut_Click(object sender, System.EventArgs e)

{
// This code is executed when the user clicks the "Sign out" button and
deletes the cookie and the ticket
// for the customer.
FormsAuthentication.SignOut();
FormsAuthentication.RedirectToLoginPage();

}

public void LoadSmallCart()

{
// We declare "num" to iterate through the HttpCookie and we declare
"CartCookie" to be able to check for
// 1its existens and to get data from this HttpCookie.
Int32 num = default(Int32);

42| Page

HttpCookie CartCookie = Request.Cookies.Get("CartCookie");
ltCartItem.Text = string.Empty;

// We check to see if the HttpCookie with the name of CartCookie exists so
that we not

// will get any null point exeptions if the HttpCookie does not exist. We also
check if

// the "CartCookie" has any keys, if there are no keys there are no products
in the

// shopping cart and then we create a message for this.

if (CartCookie != null)

{

if (CartCookie.HasKeys)

{

// We iterate through each post in the HttpCookie and get the
ProductID and Quantity for

// each post. We update the literal control "ltCartItem" with data
from each row in the HttpCookie.

for (num = ©; num <= CartCookie.Values.Count - 1; num++)

{

1tCartItem.Text += CartCookie.Values.AllKeys[num] + " (" +

CartCookie.Values[num] + ")" + "
";

}
else
{
1tCartItem.Text = "There are no items in your shopping cart.";
}
}
else
{
1tCartItem.Text = "There are no items in your shopping cart.";
}
}
}
ORDER PAGE

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class Default2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)

{

// We check to see that this page loads without any postback on the page
because it is unnessary to

// to run this code if there only is a postback on the page.

if (!Page.IsPostBack)

{

43 |Page

// We check to see if there exists an FormAuthenticationTicket for the
user.
if (Request.IsAuthenticated == true)
{
// Create a FormsIdentity and a ticket.
FormsIdentity id = (FormsIdentity)User.Identity;
FormsAuthenticationTicket ticket = id.Ticket;

// The UserData information from the FormsAuthenticationTicket
contains the

// "CustomerID" of the signed in user and this value is stored in the
hidden field "HiddenCustomerID".

HiddenCustomerID.Value = ticket.UserData;

// We call this subroutine to create the order 1list

LoadOrderList();
}
else
{
Response.Redirect("Not-signed-in.aspx");
}

}

protected void LoadOrderList()
{

// We select all orders from the "Orders" table where the CustomerID equals
the CustomerID stored in the

// hidden field "HiddenCustomerID" and binds the data to the
"OrderListRepeater" control.

// Declare variables for a connection string and a SELECT statement.

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sql = "SELECT * FROM Orders WHERE CustomerID = @CustomerID ORDER BY
OrderID ASC";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqglConnection(ConnString))

{
// Create a SqlCommand.

SqlCommand cmd = new SqlCommand(sql, cn);

// Create a SqlDataReader.
SglDataReader reader = null;

// Add parameters.
cmd. Parameters.AddWithvalue("@CustomerID", HiddenCustomerID.Value);

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the connection.
cn.Open();

// Execute the SELECT statement and fill the reader with data.
reader = cmd.ExecuteReader();

44 |Page

// Bind data to the OrderlListRepeater with the reader as datasource.
OrderListRepeater.DataSource = reader;
OrderListRepeater.DataBind();

¥
catch (Exception ex)
{
Response.Write(ex.Message);
}
finally
{
// Dispose the SqlCommand.
cmd.Dispose();
// Close the reader.
if (reader != null)
reader.Close();
}

}

protected void OrderListRepeater_ItemCommand(object source,
System.Web.UI.WebControls.RepeaterCommandEventArgs e)

{

// We pick up the order id for the selected order according to the command
argument and store

// this value in a variable called "OrderID"

string OrderID = (e.CommandArgument).ToString();

// We set visiblity for OrderListPanel and OrderPanel.
OrderListPanel.Visible = false;
OrderPanel.Visible = true;

// We select the order from the Orders table that has the same OrderID as the
value in the

// OrderID variable. We use an SQL datareader to get data and passes the data
from one single row

// (CommandBehavior.SingleRow) to labels on the Orders.aspx webpage.

// Declare variables for a connection string and a SELECT statement.

string ConnStringl =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sqll = "SELECT * FROM Orders WHERE OrderID = @OrderID";

// Create a SglConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqlConnection(ConnStringl))

// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(sqll, cn);

// Create a SqlDataReader.
SglDataReader reader = null;

// Add parameters.
cmd. Parameters.AddWithvalue("@0rderID", OrderID);

// The Try/Catch/Finally block is used to handle exceptions.

try
{

45| Page

// Open the connection.
cn.Open();

// Execute the SELECT statement and fill the reader with data.

reader = cmd.ExecuteReader(CommandBehavior.SingleRow);

// Loop the reader.
while (reader.Read())
{
1bOrderID.Text = reader["OrderID"].ToString();
1bOrderDate.Text = string.Format("{0:yyyy-MM-dd}",
reader["OrderDate"].ToString());
1bName.Text = reader["Company"].ToString();

1bCustomerNumber.Text = reader["CustomerID"].ToString();

1bAttention.Text = reader["Attention"].ToString();
1lbContact.Text = reader["Contact"].ToString();
1bAdress.Text = reader["Adress"].ToString();

1bPostalCode.Text = reader["PostalCode"].ToString();

1bCity.Text = reader["City"].ToString();
1bCountry.Text = reader["Country"].ToString();

}
¥
catch (Exception ex)
{
Response.Write(ex.Message);
}
finally
{
// Dispose the SqlCommand.
cmd.Dispose();
// Close the reader.
if (reader != null)
reader.Close();
}

}

// When we have selected a order we want to select the product
order in the OrdersProducts

rows for this

// table and fill the "ProductRowRepeater" with these rows. In our SELECT

statement we have a INNER JOIN
// statement to get the product name from the "Products" table
calculation for row sum.

and a

// Declare variables for a connection string and a SELECT statement.

string ConnString2 =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();
string sql2 = "SELECT O.ProductID, P.ProductName , O.Quantity,

0.PriceExSaleTax FROM OrdersProducts As O INNER JOIN Products As P ON P.ProductID =
0.ProductID WHERE OrderID = @OrderID GROUP BY O.ProductID, P.ProductName, O.Quantity,

0.PriceExSaleTax ORDER BY ProductID ASC";

// Create a SqlConnection. The using block is used to call dispose (close)

automatically even
// if there are an exception.
using (SqlConnection cn = new SqlConnection(ConnString2))

{
// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(sql2, cn);

// Create a SqlDataReader.

46 |Page

SglDataReader reader = null;

// Add parameters.
cmd. Parameters.AddWithvalue("@0rderID", OrderID);

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the connection.
cn.Open();

// Execute the SELECT statement and fill the reader with data.
reader = cmd.ExecuteReader();

// Bind data to the ProductRowRepeater.
ProductRowRepeater.DataSource = reader;
ProductRowRepeater.DataBind();

}
catch (Exception ex)
{
Response.Write(ex.Message);
b
finally
{
// Dispose the SqlCommand.
cmd.Dispose();
// Close the reader.
if (reader != null)
reader.Close();
b

}

// Call subroutine to calculate total sums.
CalculateOrderSums();

}

protected void linkOrderList_Click(object sender, System.EventArgs e)
{
// Set visiblity for OrderlListPanel and OrderPanel.
OrderListPanel.Visible = true;
OrderPanel.Visible = false;

}
protected void CalculateOrderSums()
{
// We declare two variables that we will use for our calculations of total
sums.

decimal PriceExVat = om;
decimal VatMoney = Om;

// We iterate through each row in the "ProductRowRepeater and add values to
our two variables
foreach (RepeaterItem RepeaterRow in ProductRowRepeater.Items)
{
//Literal VatObj = (Literal)RepeaterRow.FindControl("1tVAT");
Literal RowSumObj = (Literal)RepeaterRow.FindControl("1tRowSum");

//PriceExVat += Convert.ToDecimal(RowSumObj.Text);

47 |Page

//VatMoney += Convert.ToDecimal(RowSumObj.Text) *
(Convert.ToDecimal(VatObj.Text) / 100);

}

// We add the sums to labels and calculate the totalsum as price excluding VAT
plus VAT in money

1blPriceTotal.Text = Convert.ToString(PriceExVat);

//1blVatTotal.Text = Convert.ToString(VatMoney);

1blTotalSum.Text = Convert.ToString(PriceExVat + VatMoney);

PRODUCT PAGE

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Default2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{
// We check to see that this page loads without any postback on the page
because it is unnessary to
// to run this code if there only is a postback on the page like a click on a
button.
if (!Page.IsPostBack)

{

// When this webpage loads we request the product id from the parameter
"Pid" in the url and

// places this value in the hidden field "HiddenProductID".

HiddenProductID.Value = Convert.ToString(Request.QueryString["Pid"]);

// We select the product that has the product id that is saved in the
"HiddenProductID" field and

// binds the data from the select statement to the controls on
"Product.aspx”.

// Declare variables for a connection string and a SELECT statement.

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sql = "SELECT ProductID, ProductName, Description, PriceExSaleTax
FROM Products WHERE ProductID = @ProductID";

// Create a SqglConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqglConnection(ConnString))

48 |Page

// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(sql, cn);

// Create a SqlDataReader.
SglDataReader reader = null;

// Add parameters.
cmd.Parameters.AddWithvalue("@ProductID", HiddenProductID.Value);

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the connection.

cn.Open();

// Execute the select statement and fill the reader.
reader = cmd.ExecuteReader(CommandBehavior.SingleRow);

// Loop the reader.

while (reader.Read())

{
HiddenProductID.Value = reader["ProductID"].ToString();
1tProductName.Text = reader["ProductName"].ToString();
1tDescription.Text = reader["Description"].ToString();
1tPriceExSaleTax.Text = reader["PriceExSaleTax"].ToString();
1tSaleTax.Text = reader["SaletaxMoney"].ToString();
1tSaleTaxPercent.Text = string.Format("{0:P}",

reader["SaletaxPercent"]);

1tTotalPrice.Text = reader["TotalPrice"].ToString();

¥
}
catch (Exception ex)
{
Response.Write(ex.Message);
}
finally
{
// Dispose the SqlCommand.
cmd.Dispose();
// Close the reader.
if (reader != null)
reader.Close();
¥

}

protected void btnBuy_Click(object sender, System.EventArgs e)
{
// We first check to see if the user has signed in and if the user not 1is
signed in we redirect him
// to the "Not-signed-in.aspx" webpage.
if (Request.IsAuthenticated == true)
{
// We declare one variable as int32 to be able to use the value in the
quantity textbox.
Int32 AddNumberOfUnits = default(Int32);

// We try to convert the text in the textbox "txtQuantity" to a Int32 with
the use of TRYPARSE and if this

49 |Page

// operation succeed this value will be added to the "AddNumberOfUnits"
variable. If the conversion not is

// a success the "AddNumberOfUnits" variable gets @ as the value.

Int32.TryParse(txtQuantity.Text, out AddNumberOfUnits);

// We declare ShoppingCookie as a HttpCookie, selects the cookie with the
name "CartCookie" and

// store this cookie in "ShoppingCookie". If we don’t find any cookie with
the name of "CartCookie"

// "ShoppingCookie will get "Nothing" as the value.

HttpCookie ShoppingCookie = default(HttpCookie);

ShoppingCookie = Request.Cookies.Get("CartCookie");

// We check to see if the HttpCookie with the name of CartCookie exists so
that we not

// will get any null point exeptions if the HttpCookie does not exist. If
the cookie

// exists we use this cookie and if the cookie does not exist we create a
new cookie.

if (ShoppingCookie != null)

// We check to see if the HttpCookie has keys, if the HttpCookie has
keys we

// find the value (quantity) from the key that corresponds to the
ProductID

// and add the supplied quantity to the old quantity. If the
HttpCookie does

// not have keys we just add the supplied quantity to a key with the
ProductID and

// deletes on key with the value of "Nothing" that are created in this
case.

if (ShoppingCookie.HasKeys)

{
Int32 01dQty =
Convert.ToInt32(Request.Cookies["CartCookie"][HiddenProductID.Value]);

ShoppingCookie.Values[HiddenProductID.Value] =
Convert.ToString(01dQty + AddNumberOfUnits);
ShoppingCookie.Expires = DateTime.Now.AddHours(3);
Response.Cookies.Add(ShoppingCookie);
}

else

{
ShoppingCookie.Values[HiddenProductID.Value] =
Convert.ToString(AddNumberOfUnits);
ShoppingCookie.Values.Remove(null);
ShoppingCookie.Expires = DateTime.Now.AddHours(3);
Response.Cookies.Add(ShoppingCookie);

else

// If a CartCookie does not exist we create a new HttpCookie and add
the

// quantity to a key with the name of the ProductID.

ShoppingCookie = new HttpCookie("CartCookie");

ShoppingCookie.Values[HiddenProductID.Value] =
Convert.ToString(AddNumberOfUnits);

ShoppingCookie.Expires = DateTime.Now.AddHours(3);

Response.Cookies.Add(ShoppingCookie);

50| Page

// Update the small shopping cart by calling a public method in the Start

class on
// the masterpage.
((MasterPage2)this.Master).LoadSmallCart();
}
else
{
Response.Redirect("Not-signed-in.aspx");
¥
}
}

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Default2 : System.Web.UI.Page
{

protected void Page Load(object sender, EventArgs e)

{

// We check to see that this page loads without any postback on the page
because it is unnessary to
// to run this code if there only is a postback on the page like a click on a
button.
if (!Page.IsPostBack)
{
// We select all products from the "Products" table and sort the list by
"ProductName" in ascending order.
// The data for the productds are supplied to the "ProductListRepeater"
repeater control and we split up the
// product list in pages with next and previous links for navigation.

// Declare variables for a connection string and a SELECT statement.

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sql = "SELECT ProductID, ProductName, Description, PriceExSaleTax
FROM Products ORDER BY ProductName ASC";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqlConnection(ConnString))

// Create a SqlDataAdapter.
SqlDataAdapter sad = new SqlDataAdapter();

// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(sql, cn);

// Create a DataTable.
DataTable dt = new DataTable();

51|Page

// Create a PagedDataSource.
PagedDataSource objPds = new PagedDataSource();

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the SqlConnection.

cn.Open();

// Assign the select command to the SqlDataAdapter.
sad.SelectCommand = cmd;

// Fill the data table "dt" with data from the SqglDataAdapter
sad.Fill(dt);

// Populate the repeater control with the datatable
objPds.DataSource = dt.DefaultView;

// Indicate that the data should be paged
objPds.AllowPaging = true;

// Set the pagesize
objPds.PageSize = 10;

// The current page (curpage) is declared as an integer
Int32 curpage;

// We set the page number for the current page from the page
parameter in the url

// or to 1 if there are no page parameter in the url

if (Request.QueryString["page"] != null)

{
curpage = Convert.ToInt32(Request.QueryString["page"]);
}
else
{
curpage = 1;
}

// The current page index is equal to the current page minus 1 and
we need to know this

// to show the right page to the user.

objPds.CurrentPageIndex = curpage - 1;

// We set the text in the middle to show the current pagenumber
and the last pagenumber

1lblCurrentPage.Text = "| Page:
objPds.PageCount.ToString() + " |";

+ curpage.ToString() + " of " +

// This is code for the link to the previous page, we don't show
this link on the first page
if (!objPds.IsFirstPage)

{
InkPrev.Visible = true;
InkPrev.NavigateUrl = "~/Home.aspx?" + "page=" +
Convert.ToString(curpage - 1);
}

// This is code for the link to the next page, we don't show this
link on the last page
if (!objPds.IsLastPage)

52|Page

InkNext.Visible = true;
InkNext.NavigateUrl = "~/Home.aspx?" + "page=" +
Convert.ToString(curpage + 1);

// This code is used to bind data to the repeater control.
ProductListRepeater.DataSource = objPds;
ProductListRepeater.DataBind();

¥
catch (Exception ex)
{
Response.Write(ex.Message);
}
finally
{
// Dispose of objects to avoid memory leakage.
sad.Dispose();
cmd.Dispose();
dt.Dispose();
¥
¥
}
¥
protected string GenerateURL(object Product)
{
//Create a URL for each product link
string strProdUrl = "~/Product.aspx?Pid=" + Product;
return strProdurl;
}

}

PRODUCTCART PAGE

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class Default2 : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e)
{
}
protected string GenerateURL(object Product)
{
//Create a URL for each product link
string strProdUrl = "~/Product.aspx?Pid=" + Product;
return strProdurl;
}
}

REGISTER PAGES

using System;

53| Page

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

using System.Data.SqlClient;

public partial class Default2 : System.Web.UI.Page
{

protected void Page Load(object sender, EventArgs e)

{

}
protected void btnRegister_Click(object sender, EventArgs e)

{
// Takes the data from the form at "Register-customer.aspx” when the button is
clicked and then inserts
// this data to the table "Customers" in the "Webshop" database. The password
is encrypted with SHA1l and stored
// as an encrypted password in the table.

// Set the SqlEx label to a empty string.
SqlEx.Text = string.Empty;

string passwordHash =
FormsAuthentication.HashPasswordForStoringInConfigFile(txtPassword.Text, "SHA1");

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sql = "INSERT INTO Customers (Username, Password, Company, OrgNumber,
Contact, Attention, Adress, "

+ "PostalCode, City, Country) VALUES (@Username, @Password, @Company,
@OrgNumber, @Contact, @Attention, "

+ "@Adress, @PostalCode, @City, @Country)";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqglConnection(ConnString))

// Create a SqlCommand.
SqlCommand cmd = new SqlCommand(sql, cn);

// Add parameters.

cmd.Parameters.AddWithValue("@Username", txtUserName.Text);
cmd.Parameters.AddWithvValue("@Password", passwordHash);
cmd.Parameters.AddWithValue("@Company", txtCompanyName.Text);
cmd.Parameters.AddWithvValue("@0rgNumber", txtOrganisationNumber.Text);
cmd. Parameters.AddWithvalue("@Contact”, txtContact.Text);

cmd. Parameters.AddWithvValue("@Attention"”, txtAttention.Text);
cmd.Parameters.AddWithValue("@Adress", txtAdress.Text);

cmd. Parameters.AddWithvValue("@PostalCode"”, txtPostalCode.Text);
cmd. Parameters.AddWithvalue("@City", txtCity.Text);

cmd. Parameters.AddWithvalue("@Country”, txtCountry.Text);

// The Try/Catch/Finally block is used to handle exceptions.
try
{

// Open the connection.

54 |Page

cn.Open();

// Execute the INSERT statement.
cmd . ExecuteNonQuery();

// Set visibility for panels.
CurrentPanel.Visible = false;
ThankYouPanel.Visible = true;

}
catch (SgqlException Sqglexc)
{
switch (Sgqlexc.Number)
{
case 2601:
SqlEx.Text = "* Given E-mail already exists";
break;
default:
Response.Write(Sqlexc.Message);
break;
}
¥
catch (Exception ex)
{
Response.Write(ex.Message);
¥
finally
{
// Dispose the SqlCommand to avoid memory leakage.
cmd.Dispose();
¥

}

SHOPPING CART PAGE

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Data.SqlClient;

public partial class Default2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)

{

// We check to see that this page loads without any postback on the page
because it is unnessary to

// to run this code if there only is a postback on the page like a click on a
button.

if (!Page.IsPostBack)

{

// We check to see if there exists an FormAuthenticationTicket for the

user.

55|Page

if (Request.IsAuthenticated == true)

{
// Declare variables for a FormsIdentity and a ticket.
FormsIdentity id = (FormsIdentity)User.Identity;
FormsAuthenticationTicket ticket = id.Ticket;

// We get the CustomerID from UserData in the
FormsAuthenticationTicket and store this value

// in the hidden field "HiddenCustomerID".

HiddenCustomerID.Value = Convert.ToString(ticket.UserData);

// We call this subroutine to create our shopping cart.

LoadShoppingCart();
}
else
{
Response.Redirect("Not-signed-in.aspx");
}

}

protected void LoadShoppingCart()
{
// We create a DataTable (in memory) to store data in and a DataRow so that we
can add rows to the
// DataTable as we iterate through each product in the HttpCookie.
DataTable tblShoppingCart = new DataTable("CartTable");
DataRow rwShoppingCart = null;

// We declare "num" to iterate through the HttpCookie and we declare
"CartCookie" to be able to check for

// 1its existens and to get data from this HttpCookie.

Int32 num = default(Int32);

HttpCookie CartCookie = Request.Cookies.Get("CartCookie");

// We check to see if the HttpCookie with the name of CartCookie exists so
that we not
// will get any null point exeptions if the HttpCookie does not exist. We also
check if
// the "CartCookie" has any keys, if there are no keys there are no products
in the
// shopping cart and then we will get an exeption if we try to selects
products
// from the "Products" table.
if (CartCookie != null)
{
if (CartCookie.HasKeys)
{
// We add 5 columns to our DataTable, we need to add the columns
before we iterate through each
// product so that we get only one set of columns :-).
tblShoppingCart.Columns.Add("ProductIDC");
tblShoppingCart.Columns.Add("ProductName");
//tblShoppingCart.Columns.Add("SaletaxPercent");
tblShoppingCart.Columns.Add("QuantityC");
tblShoppingCart.Columns.Add("PriceExSaleTax");

// We iterate through each post in the HttpCookie and get the
ProductID and Quantity for

// each post. We use the ProductID to select data from the Products
table.

56| Page

for (num = ©; num <= CartCookie.Values.Count - 1; num++)

{

string ProductID = CartCookie.Values.AllKeys[num];
string Quantity = CartCookie.Values[num];

try
{
string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();
string sql = "SELECT * FROM Products WHERE ProductID =
@ProductID";

// Create a SqlConnection. The using block is used to call
dispose (close) automatically
// even if there are an exception.
using (SglConnection cn = new SqlConnection(ConnString))
{
// Create a SqlCommand. The using block is used to call
dispose (close) automatically
// even if there are an exception.
using (SgqlCommand cmd = new SqlCommand(sql, cn))
{
// Add parameters.
cmd.Parameters.AddWithValue("@ProductID", ProductID);

// Open the connection.
cn.Open();

// Create a SqlDatareader and execute the SELECT
command. The using block is used

// to call dispose (close) automatically even if there
are an exception.

using (SqlDataReader reader =
cmd. ExecuteReader (CommandBehavior.SingleRow))

{

while (reader.Read())
{
// We add one row to the DataTable and fill
each cell with data.
rwShoppingCart = tblShoppingCart.NewRow();
rwShoppingCart[@] = ProductID;
rwShoppingCart[1] =
reader["ProductName"].ToString();
//rwShoppingCart[2] =
Convert.ToDecimal(reader["SaletaxPercent"]) * 100;
rwShoppingCart[2]
rwShoppingCart[3]

Quantity;

reader["PriceExSaleTax"].ToString();
tb1lShoppingCart.Rows.Add(rwShoppingCart);

}
}
}

}
}
catch (Exception ex)
{

Response.Write(ex.Message);
}

57|Page

}

// We fill our Repeater control with the data from the
"tblShoppingCart" DataTable.

CartRepeater.DataSource = tblShoppingCart;

CartRepeater.DataBind();

// Call a subroutine to calculate totals in the shopping cart.
CalculateCartSums();

else

// If the HttpCookie does not have any keys we update the shopping
cart so that it does not show

// any rows.

CartRepeater.DataSource = string.Empty;

CartRepeater.DataBind();

// Call a subroutine to calculate totals in the shopping cart
CalculateCartSums();

}

protected void CartRepeater_ItemCommand(object source,
System.Web.UI.WebControls.RepeaterCommandEventArgs e)
{
// This code runs when a user has clicked a remove button (X) on a row.
// We get the ProductID from the CommandArgument when the remove button is
clicked.
string ProductID = (e.CommandArgument).ToString();

// We declare the variable CartCookie to check if the HttpCookie "CartCookie"
exits and to

// be able to remove a key from it.

HttpCookie CartCookie = Request.Cookies.Get("CartCookie");

// We check if the CartCookie exists and then removes the key that has the
"ProductID" as its name
// and then we then reload the shopping cart so that our repeater gets
updated.
if (CartCookie != null)
{
CartCookie.Values.Remove(ProductID);
CartCookie.Expires = DateTime.Now.AddHours(3);
Response.Cookies.Add(CartCookie);

// Reload the shopping cart
LoadShoppingCart();

// Update the small shopping cart by calling a public method in the Start
class for the masterpage.
((MasterPage2)this.Master).LoadSmallCart();
¥
}

protected void btnUpdateCart_Click(object sender, System.EventArgs e)
{

58| Page

// We declare the variable CartCookie to check if the HttpCookie "CartCookie"
exits and to

// be able to remove a key from it.

HttpCookie CartCookie = Request.Cookies.Get("CartCookie");

// We check to see if the HttpCookie with the name of CartCookie exists so
that we not
// will get any null point exeptions if the HttpCookie does not exist.
if (CartCookie != null)
{
if (CartCookie.HasKeys)

{

foreach (RepeaterItem RepeaterRow in CartRepeater.Items)

{
Literal ProductObj =
(Literal)RepeaterRow.FindControl("1tProductID");
TextBox QuantityObj =
(TextBox)RepeaterRow.FindControl("txtQuantity");

CartCookie.Values[ProductObj.Text] = QuantityObj.Text;
CartCookie.Expires = DateTime.Now.AddHours(3);
Response.Cookies.Add(CartCookie);

}

// Recalculate the shopping cart
CalculateCartSums();

// Update the small shopping cart by calling a public method in the Start
class for the masterpage.
((MasterPage2)this.Master).LoadSmallCart();

}

protected void btnCheckOut_Click(object sender, System.EventArgs e)
{
// When the user wants to check out and has clicked the "Check out"™ button we
make the
// "CheckOutPanel" (includes textboxes for customer information) visible.
CheckOutPanel.Visible = true;

// We use the value for CustomerID that is stored in the hidden field
"HiddenCustomerID" to get

// information on the customer in the "Customers" table and inserts this
information in textboxes.

// We use an SqlDataReader to get the information and just want to select one
single row (CommandBehavior.SingleRow).

try
{
string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();
string sql = "SELECT * FROM Customers WHERE CustomerID = @CustomerID";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even

// if there are an exception.

using (SqlConnection cn = new SqlConnection(ConnString))

{

59| Page

// Create a SqlCommand. The using block is used to call dispose
(close) automatically even

// if there are an exception.

using (SqlCommand cmd = new SqlCommand(sql, cn))

// Add parameters.
cmd.Parameters.AddWithvalue("@CustomerID",
HiddenCustomerID.Value);

// Open the connection.
cn.Open();

// Create a SqlDataReader. The using block is used to call dispose
(close) automatically

// even if there are an exception.

using (SqlDataReader reader =
cmd. ExecuteReader (CommandBehavior.SingleRow))

{

while (reader.Read())

{
txtCompany.Text = reader["Company"].ToString();
txtOrganisationNumber.Text =

reader["OrgNumber"].ToString();

txtContact.Text = reader["Contact"].ToString();
txtAttention.Text = reader["Attention"].ToString();
txtAdress.Text = reader["Adress"].ToString();
txtPostalCode.Text = reader["PostalCode"].ToString();
txtCity.Text = reader["City"].ToString();
txtCountry.Text = reader["Country"].ToString();

}
}
}

}
}
catch (Exception ex)
{

Response.Write(ex.Message);
}

}

protected void btnOrder_Click(object sender, System.EventArgs e)
{
//// We declare the variable "Identity" that will store the OrderID of the
order that is added so that we can use
// this OrdeID number when we are to insert data in the table "OrderProduct”
that has a many to many relationsship
// to the Order table. Check database diagrams to se the relationships between
tables.

Int64 Identity = ©O;

// We insert an order in the "Orders" table that has OrderID as a identity
field that increments with 1.

// We have added ; SELECT SCOPE_IDENTITY() to the SQL statement to get the
OrderID of the inserted order

// and use "ExecuteScalar()" instead of "ExecuteNonQuery()" in the SQL
command.

try
{

60| Page

string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();

string sql = "INSERT INTO Orders (OrderDate, CustomerID, Company,
OrgNumber, Contact, Attention, "

+ "Adress, PostalCode, City, Country) VALUES (@OrderDate, @CustomerID,
@Company, @OrgNumber, "

+ "@Contact, @Attention, @Adress, @PostalCode, @City, @Country); SELECT
SCOPE_IDENTITY()";

// Create a SqlConnection. The using block is used to call dispose (close)
automatically even if

// there are an exception.

using (SqlConnection cn = new SqlConnection(ConnString))

// Create a SqlCommand. The using block is used to call dispose
(close) automatically even if
// there are an exception.
using (SqlCommand cmd = new SqlCommand(sql, cn))
{
// Add parameters.
cmd.Parameters.AddWithValue("@OrderDate”,
DateTime.Now.ToString());
cmd.Parameters.AddWithValue("@CustomerID",
HiddenCustomerID.Value);
cmd.Parameters.AddWithValue("@Company", txtCompany.Text);
cmd.Parameters.AddWithValue("@0rgNumber",
txtOrganisationNumber.Text);
cmd.Parameters.AddWithValue("@Contact”, txtContact.Text);
cmd.Parameters.AddWithValue("@Attention", txtAttention.Text);
cmd.Parameters.AddWithValue("@Adress", txtAdress.Text);
cmd.Parameters.AddWithValue("@PostalCode", txtPostalCode.Text);
cmd.Parameters.AddWithValue("@City", txtCity.Text);
cmd.Parameters.AddWithValue("@Country”, txtCountry.Text);

// Open the connection
cn.Open();

// Execute the INSERT statement and get the Identity number.
Identity = Convert.ToInt64(cmd.ExecuteScalar());

}
¥
¥
catch (SqlException Sqglex)
{
Response.Write(Sqlex.Message);
}
catch (Exception ex)
{
Response.Write(ex.Message);
¥

// When we have inserted an order we want to insert the product rows for the
order in the "OrdersProducts" table.
// We first check to see that the identity variable not has a blank value
before we insert data to the
// "OrdersProducts" table.
if (Identity > 9)
{
// We iterate through each repeater row in the "CartRepeater" and insert
every row in the
// "OrdersProduct" table.

6l|Page

foreach (RepeaterItem RepeaterRow in CartRepeater.Items)

{
Literal ProductIDObj =
(Literal)RepeaterRow.FindControl("1tProductID");
//Literal VATObj = (Literal)RepeaterRow.FindControl("1tVAT");
TextBox QuantityObj = (TextBox)RepeaterRow.FindControl("txtQuantity");
Literal PriceObj = (Literal)RepeaterRow.FindControl("ltPrice");

try
{
string ConnString =
ConfigurationManager.ConnectionStrings["ConnectionString"].ToString();
string sql = "INSERT INTO OrdersProducts (OrderID, ProductID,
Quantity, PriceExSaleTax) VALUES (@OrderID, @ProductID, @Quantity, @PriceExSaleTax)";

// The using block is used to call dispose (close) automatically
even if there are an exception.
using (SqlConnection cn = new SqlConnection(ConnString))
{
using (SqlCommand cmd = new SqlCommand(sql, cn))
{
cmd.Parameters.AddWithValue("@0OrderID", Identity);
cmd.Parameters.AddWithValue("@ProductID",
ProductIDObj.Text);

cmd.Parameters.AddWithValue("@Quantity",
Convert.ToDecimal(QuantityObj.Text));

cmd.Parameters.AddWithValue("@PriceExSaleTax",
PriceObj.Text);

cn.Open();
cmd . ExecuteNonQuery();
¥
}
}
catch (SgqlException Sqglex)
{
Response.Write(Sqlex.Message);
¥
catch (Exception ex)
{
Response.Write(ex.Message);
}

}

// Delete the HttpCookie, we declare the variable CartCookie to check if
the HttpCookie "CartCookie"

// exits and to be able to remove it.

HttpCookie CartCookie = Request.Cookies.Get("CartCookie");

// We check if the CartCookie exists and then sets the expiration date to
current DateTime minus one hour
if (CartCookie != null)
{
CartCookie.Expires = DateTime.Now.AddHours(-1);
Response.Cookies.Add(CartCookie);

}

// Redirect the user to the order list webpage
Response.Redirect("Orders.aspx");

62|Page

}

protected void CalculateCartSums()
{

// We declare variables to calculate totals for the shopping cart.

decimal PriceTotal = om;
decimal VatTotal = ©Om;

// We iterate through each row in the "CartRepeater" and add values to our
three variables
foreach (RepeaterItem RepeaterRow in CartRepeater.Items)
{
//Literal VatObj = (Literal)RepeaterRow.FindControl("1tVAT");
Literal PriceExVat = (Literal)RepeaterRow.FindControl("1tPrice");
TextBox QuantityObj = (TextBox)RepeaterRow.FindControl("txtQuantity");

// Additions for totals

//PriceTotal += Convert.ToDecimal(PriceExVat.Text) *
Convert.ToDecimal(QuantityObj.Text);

//VatTotal += Convert.ToDecimal(PriceExVat.Text) *
Convert.ToDecimal(QuantityObj.Text) * (Convert.ToDecimal(VatObj.Text) / 100);

}

// We set the totals to labels under our repeater control and calculate the
totalsum

1blPriceTotal.Text = Convert.ToString(PriceTotal);

//1blvatTotal.Text = Convert.ToString(VatTotal);

//1blTotalSum.Text = Convert.ToString(PriceTotal + VatTotal);

CAPTCHAPAGE

using System;

using System.Collections.Generic;
using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Drawing.Imaging;

public partial class Default3 : System.Web.UI.Page
{

protected void Page Load(object sender, EventArgs e)

{

CaptchaImage ci = new
CaptchaImage(this.Session["CaptchalmageText"].ToString(), 200, 50, "Arial Black");

// Change the response headers to output a JPEG image.

this.Response.Clear();
this.Response.ContentType = "image/jpeg";

63|Page

// Write the image to the response stream in JPEG format.
ci.Image.Save(this.Response.OutputStream, ImageFormat.Jpeg);

// Dispose of the CAPTCHA image object.
ci.Dispose();

FEEDBACK PAGE

using System;

using System.Collections.Generic;
using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Data;

using System.Data.SqlClient;
using System.Configuration;

using System.Net.Mail;

public partial class Default2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)

{

}
protected void Buttonl_Click(object sender, EventArgs e)

{

SqlConnection con = new
SqlConnection(ConfigurationManager.ConnectionStrings["ConnectionString"].ToString());

SqlCommand cmd = new SqlCommand();

con.Open();

cmd.Connection = con;

cmd.CommandText = "insert into feedback (username, generalfeedback,
reportbug, idea, email, phone) values (@u,@g, @r, @i, @e, @p)";

cmd. Parameters.AddWithvValue("@g", TextBoxl.Text);

cmd.Parameters.AddWithvValue("@r", TextBox2.Text);

cmd. Parameters.AddWithvalue("@i", TextBox3.Text);

cmd.Parameters.AddWithvValue("@e", TextBox4.Text);

cmd.Parameters.AddWithvValue("@p", TextBox5.Text);

cmd.Parameters.AddWithvalue("@u", "SK" + TextBox5.Text + createpassword(3));

cmd . ExecuteNonQuery();
Response.Write("Data Inserted");

using (SqlConnection conl = new
SqlConnection(ConfigurationManager.ConnectionStrings["abc"].ToString()))
{
SqlCommand cmdl = new SqlCommand();
conl.0pen();
cmdl.Connection = conl;
cmdl.CommandText = "select * from feedback where email=@em";
cmdl.Parameters.AddWithValue("@em", TextBox4.Text);

64|Page

SglDataReader dr;
dr = cmdl.ExecuteReader();
if (dr.HasRows)

dr.Read();
Labell.Text = "your Id Is" + dr["username"].ToString();

}

conl.Close();

//try

/74

DataSet ds = new DataSet();

using (SqlConnection conl = new
SqlConnection(ConfigurationManager.ConnectionStrings["abc"].ToString()))

{
conl.Open();
SqlCommand cmdl = new SqlCommand();
cmdl.Connection = conl;
cmdl.CommandText = "select * from feedback where email=@e";
cmdl.Parameters.AddWithvValue("@e", TextBox4.Text);
SqlDataAdapter ad = new SqlDataAdapter(cmdl);
ad.Fill(ds);

}

if (ds.Tables[@].Rows.Count > 9)

{

MailMessage msg = new MailMessage();

msg.From = new MailAddress("bhanujatrehan@gmail.com");
msg.To.Add("bhanujatrehan@gmail.com");

msg.Subject = "Feedback";

msg.Body = "Hi
 Please Check The FeedBack

 Your UserName:"
+ ds.Tables[@].Rows[@]["username"] + "

 Your Email" + " " +
ds.Tables[@].Rows[@]["email"];

msg.IsBodyHtml = true;

SmtpClient smtp = new SmtpClient();

smtp.Host = "smtp.gmail.com";

smtp.Port = 587;

smtp.Credentials = new
System.Net.NetworkCredential("bhanujatrehan@gmail.com", "trehanbhanu");

smtp.EnableSsl = true;

smtp.Send(msg);

Response.Write("Email sent ");

con.Close();

}
}
public static string createpassword(int PasswordLength)
{

string allowchaos = "0123456789";
Random rndno = new Random();
Char[] chaos = new char[PasswordLength];

65| Page

int allowedcharcount = allowchaos.Length;
for (int i = @; i < PasswordLength; i++)

{
chaos[i] = allowchaos[(int)((allowchaos.Length) * rndno.NextDouble())];
3
return new string(chaos);
¥
}
CONTACT US PAGE

using System;

using System.Collections.Generic;
using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Net.Mail;

public partial class _Default : System.Web.UI.Page
{

private Random random = new Random();

private void Page_Load(object sender, System.EventArgs e)

{
if (!this.IsPostBack)
{
// Create a random code and store it in the Session object.
this.Session["CaptchaImageText"] = GenerateRandomCode();
}
¥
//
// Returns a string of six random digits.
//
private string GenerateRandomCode()
{
string s = "";
for (int i = 0; 1 < 6; i++)
s = String.Concat(s, this.random.Next(10).ToString());
return s;
¥
protected void txtSubmit_Click(object sender, EventArgs e)
{

MailMessage Message = new MailMessage();

Message.From = new MailAddress(txtEmail.Text, txtName.Text +
Page.User.Identity.Name);

Message.To.Add(new MailAddress("contact@yourdomain.com™));

Message.Body = txtBody.Text;

Message.Subject = "Contact Us";

Message.IsBodyHtml = true;

try

{

if (this.CodeNumberTextBox.Text ==

this.Session["CaptchaImageText"].ToString())

{

this.MessagelLabel.Text = "";

66 |Page

SmtpClient mailClient = new SmtpClient();
mailClient.Send(Message);
1blFeedbackOK.Visible = true;

}
else
{
// Display an error message.
this.Messagelabel.Text = "ERROR: Incorrect, try again.";
// Clear the input and create a new random code.
this.CodeNumberTextBox.Text = "";
1blFeedbackOK.Visible = false;
this.Session["CaptchalmageText"] = GenerateRandomCode();
}
}
catch (Exception ex)
{
1blFeedbackKO.Visible = true;
}
}
}
7. TESTING

Testing is the process of executing a system with the intent of finding an error. It is defined
as the process in which defects are identified, isolated, subjected for rectification and ensured
that product is defect free in order to produce the quality product and hence customer
satisfaction. The quality is defined as justification of the requirements. Defect is nothing but
deviation from the requirements and bug. Testing can demonstrate the presence of bugs, but
not their absence. Debugging and Testing is not the same thing. Testing is a systematic
attempt to break a program. Debugging is the art or method of uncovering why the script

/program did not execute properly.
Testing Methodologies:

* Black box (Functional) Testing: is the testing process in which tester can perform testing

on an application without having any internal structural knowledge of application. Usually

Test Engineers are involved in the black box testing.

+ White box (Structural) Testing: is the testing process in which tester can perform testing
on an application with having internal structural knowledge. Usually The Developers are

involved in white box testing.

67 |Page

* Gray Box Testing: is the process in which the combination of black box and white box

tonics’ are used.
7.1 Functional Testing

This testing method considers a module as a single unit and checks the unit at interface and
communication with other modules rather getting in details at statement level. Here the
module will be treated as a block that will take some input and generate output. Output for a

given set of input combinations are forwarded to other modules.

Black-box test are designed to uncover errors functional requirement without regard to the
internal workings of a program. Black-box testing techniques focus on the information
domain of the software, deriving test cases by partitioning the input and output domain of a
program in manner that provides through test coverage. The black-box test is used to
demonstrate that software functions are operational, that input is properly produced, and the
integrity of external information is maintained. The black-box test examines some
fundamental aspect of a system with little or no regard for the logical structure of the

software.

Graph based testing methods explore the relationship between and behaviour of program
objects. Equivalence partitioning divides the input classes of data are likely to exercise
specific software function. Boundary values analysis probes the program’s ability to handle

data at the limits of acceptability.
7.2 Structural Testing

This is a unit testing method where a unit will be taken at a time and tested thoroughly at a
statement level to find the maximum possible errors. The white box testing is called Glass

Box Testing.

We tested step wise every piece of code, taking care that every statement in the code is
executed at least once. We have generated a list of test cases, sample data, which is used to

check all possible combinations of execution paths through the code at every module level.

White-box test focuses on the program control structure. Test cases are derived to ensure that
all statement in the program control structure has been executed at least once during testing

and that all logical conditions have been exercised. Basis path testing, a white box technique,

68| Page

makes use of program graphs (or graph matrices) to derive the set of linearly independent test
that will ensure coverage. Condition and data flow testing further exercising degrees of

complexity.

According to the need of the software, the following testing plans have been planned on some
amount on test data. Hypothetical data is used to test the system before implementation.
Some temporary user ids are created to check the validity and authenticity of the users.
Various constraints are checked for their working. A demo case will be taken with dummy

data for new users.

7.3 Levels Of Testing

7.3.1 System Testing

Testing is a set activity that can be planned and conducted systematically. Testing begins at
the module level and work towards the integration of entire computers based system. Nothing
is complete without testing, as it is vital success of the system.
* Testing Objectives:

There are several rules that can serve as testing objectives, they are

1. Testing is a process of executing a program with the intent of finding an error

2. A good test case is one that has high probability of finding an undiscovered error.

3. A successful test is one that uncovers an undiscovered error.
If testing is conducted successfully according to the objectives as stated above, it would
uncover errors in the software. Also testing demonstrates that software functions appear to
the working according to the specification, that performance requirements appear to have
been met.
There are three ways to test a program

1. For Correctness

2. For Implementation efficiency

3. For Computational Complexity.
Tests for correctness are supposed to verify that a program does exactly what it was designed
to do. This is much more difficult than it may at first appear, especially for large programs.
Tests for implementation efficiency attempt to find ways to make a correct program faster or
use less storage. It is a code-refining process, which re-examines the implementation phase of

algorithm development. Tests for computational complexity amount to an experimental

69|Page

analysis of the complexity of an algorithm or an experimental comparison of two or more

algorithms, which solve the same problem.

* Testing Correctness

The following ideas should be a part of any testing plan:
Preventive Measures

Spot checks

Testing all parts of the program

Test Data

Looking for trouble

A e

Time for testing

7. Re Testing
The data is entered in all forms separately and whenever an error occurred, it is corrected
immediately. A quality team deputed by the management verified all the necessary

documents and tested the Software while entering the data at all levels
7.3.2 Unit Testing

As this system was partially GUI based WINDOWS application, the following were tested in
this phase

1. Tab Order

2. Reverse Tab Order

3. Field length

4. Front end validations
In our system, Unit testing has been successfully handled. The test data was given to each
and every module in all respects and got the desired output. Each module has been tested

found working properly.
7.3.3 Integration Testing

Test data should be prepared carefully since the data only determines the efficiency and
accuracy of the system. Artificial data are prepared solely for testing. Every program

validates the input data.

70| Page

7.3.4 Validation Testing

In this, all the Code Modules were tested individually one after the other. The following were
tested in all the modules

1. Loop testing

2. Boundary Value analysis

3. Equivalence Partitioning Testing
In our case all the modules were combined and given the test data. The combined module
works successfully without any side effect on other programs. Everything was found fine

working.

7.3.5 Output Testing

This is the final step in testing. In this the entire system was tested as a whole with all forms,
code, modules and class modules. This form of testing is popularly known as Black Box
testing or system testing.

Black Box testing methods focus on the functional requirement of the software. That is,
Black Box testing enables the software engineer to derive sets of input conditions that will
fully exercise all functional requirements for a program. Black Box testing attempts to find
errors in the following categories; incorrect or missing functions, interface errors, errors in
data structures or external database access, performance errors and initialization errors and

termination errors.

8. IMPLEMENTATION

8.1 Implementation of the Project

ASP.NET-Front End of Website

ASP.NET makes building real world Web applications dramatically easier. ASP.NET server
controls enable an HTML-like style of declarative programming that let you build great pages
with far less code than with classic ASP. Displaying data, validating user input, and
uploading files are all amazingly easy. Best of all, ASP.NET pages work in all browsers
including Netscape, Opera, ..ASP.NET lets you leverage your current programming language

skills. Unlike classic ASP, which supports only interpreted VBScript and J Script, ASP.NET

71| Page

now supports more than 25 .NET languages (built-in support for VB.NET, C#, and
JScript.NET), giving us unprecedented flexibility in the choice of language.

SQL SERVER EXPRESS 2008-Back End of Website

Microsoft SQL Server 2008 Management Studio Express is a free, integrated environment for
accessing, configuring, managing, administering, and developing all components of SQL
Server, as well as combining a broad group of graphical tools and rich script editors that
provide access to SQL Server to developers and administrators of all skill levels. SQL Server
2008 was released on August 6, 2008 and aims to make data management self-tuning, self-
organizing, and self-maintaining with the development of SOQL Server Always
On technologies, to provide near-zero downtime. SQL Server 2008 also includes support
for structured and semi-structured data, including digital media formats for pictures, audio,

video and other multimedia data.

8.2 Conversion Plan (How Website Works)

All the way like the working of the other websites our site also work like that once the user
writes the website name (URL) in the web browser it converts that typed name into the
particular IP if it exists for that particular website and sends the request to the server.

Now what actually happens the browser contacts the server and requests that the server
deliver the document to it. The server then gives a response which contains the document and
the browser displays this to the user. The server also tells the browser what kind of document
it is (HTML file, PDF file, ZIP file etc) and the browser then shows the document with the
program it was configured to use for this kind of document. The browser will display HTML
documents directly, and if there are references to images, JSP, sound clips etc in it and the
browser has been set up to display these it will request these also from the servers on which
they resides. It's worth noting that these will be separate requests, and add additional load to
the server and network. When the user follows another link the whole sequence starts a new
processing. These requests and responses are issued in a special language called HTTP,
which is short for Hyper Text Transfer Protocol. HTTP only defines what the browser and
web server say to each other, not how they communicate. The actual work of moving bits and
bytes back and forth across the network is done by TCP and IP. In our website the technology
what is used is explained above now how the code is working and how the data flow between

the server and client (browser) and user takes place.

72| Page

8.3 Post implementation and Software Maintenance:

First of all after the user fills the URL for online gaming portal home page is displayed which
asks the user whether he/she is a registered user or not if the user is already is a member so
he/she must go to login page where they can authenticate to website.
Software Maintenance
Software maintenance in software engineering is the modification of a software product after
delivery to correct faults, to improve performance or other attributes.
Once the software is delivered and deployed, then maintenance phase starts. Software
requires maintenance because there are some residual errors remaining in the system that
must be removed as they are discovered. Maintenance involves understanding the existing
software (code and related documents), understanding the effect of change, making the
changes, testing the new changes, and retesting the old parts that were not changed. The
complexity of maintenance task makes maintenance the most costly activity in the life of
software product.
The keys to reduce the need for maintenance are:-
e More accurately defining the user’s requirement during system development.
e Preparation of system documentation in better way.
¢ Using more effective ways for designing processing logic and communicating it to
project team members.
e Making better use of exiting tools and techniques.
e Software must be maintained when:
e The reality the software models changes,New functionality is added,It is easier to
change software than hardware,Software must be updated to run on improved
hardware or with improved software.

There are several types of software maintenance. They are:

Maintenance Description

Type

Corrective Fixes a fault in the software without changing or adding to the software's
functionality.

Adaptive Modifies software to preserve functionality in a changed environment.

Perfective Improves software performance, maintainability, etc., and can extend the

functionality of the application.

Preventive Changes are made to the system in order to prevent further faults and to

73| Page

improve the structure and maintainability of the system.

9. Project legacy
9.1 Current status of the project

Website contain four modules homepage, product page, feedback and contact us. Homepage
contains basic description such as login page, sign up and link to other pages. Product page
include all the product details, online order for all the products. Feedback page provide the
facility for the customers for online assistance and any suggestion or feedback made sends
email to the admin page. Contact us customers can contact the company anytime for their
help or for placing order. Except it all the modules of our website is completed and any
changes in the source if necessary is required that are done as per the future needs.

9.2 Remaining areas of concern

Our Site includes all the features /including user interactivity with the site but lacks in the
online payment. In blocs news updation can be added according to the company requirement
in near
future.

9.3 Technical and Managerial lesson learnt

Technical and Managerial lesson learnt through my project implementation live website for a
company Automation Of business I come to learn many languages some of which are
implemented in the project including ASP AND SQL SERVER 2008.

Regarding the managerial lesson we learnt the team work, patience, cooperation,
coordination.

74| Page

10. USER MANUAL

When a user will enter the URL for website the home page will appear

€& | @ localhost1388/Ravinderrrr/Horme. asps - Mys PlE- &+ &

O-~
mewlitho - e e (S S D 8 G () B © et shopping deai:| 15 Your pe siow? ciek Get Media Player Phugin

Home Page AboutUs Product FeedBack Contact Us

S.K

Engineering

Sidebar Menu Excellent Solution For Your Business

Speciality indIJStrit] S Admin | Filed under templates, internet
oils.

Specmhtv Industnpl-‘ E. B
Snapshot : 1

If the user want to know about the company then the user can view the content on the About

Us page where the details of the company are available.

IR itpu /o calhost 136, indermrr/About s | E=Fas >
€ | @ localhost:1383/RavinderrrifAbout.aspx e | [0 - Mysearchdiat Ll B & A
=

MySearchoial - [)] e €] m u g B © sest shopping deals

= -

Company About

Speciality industrit]
oils The company Initiated in 1989, SK Engineering Company was formed with a vision to provide speciality
speciality Industri industrial products and lubricants that matched high quality standards at an affordable price. At present
S we are linked with many quality conscious principles like “J] Gandhi chem” (dealing in products licensed
under “Rolls Royce UK"), “Fosroc” (dealing in total construction solution), Resinova Chemie (For epoxy
Anaerobic and putty and epoxy adhesives) etc. We have worked with “Loctite” and “OKS” also. We are now procuring
cyanoacrylate :} industrial oils (hydraulic, cutting, quenching, crank case oil etc) directly from refineries by hydrocrack
adhesives technology. Quality has always been our first priority followed by customer satisfaction. Continuous
Self adhesive tapefm g growth and development and providing solutions to clients and customers is our moto.

Speciality automob
products

Aerosol sprays :}

Expuxv adheslvesL__ ’
023aM | |
/2342014

Snapshot : 2
The customer has to create an account if he wants to purchase the products from the

company. i.e. user has to Register himself/herself for purchasing Products from the Website.

75| Page

& localhost:1388/Ravinderrrrr/Regis

wmySearchoial - [

~customeraspx

Sidebar Menu
Speciality industri
Di;::cla ity indus I’It}

Speciality Industri
Greases

Anaerobic and

cyanoacrylate :}

adhesives

Self adhesive tapeh:]

Speciality automobi
products

Aerosol sprays :}
Expoxy adhesives:}
Construction snlum
Others :}

Item 4
sign in
E-mail (usemame

Pass

Ol stay signed in

Sign in

Reqgister as a customer

Create a customer account

This form is us: ter a userin the "Custt
SHA1 al
buttan and y

E-mail
Password:
Confirm passv
Company/MNarr
Organization nurr
Contact:

CIO or attention
Box o str

Postal

Countn

Register

Snapshot : 3

LR 3+ A

Iﬂ e - Y I.LI.I u D B © bestshopping deals| s Your PC Slow? Click Get Media Player Phugin

1025AM | |
4/23/2014

The details of the products can be seen on the product page and the user can place an order by

selecting the products from the product page only if he/she has already Register otherwise

he/she has to Register first.

& localhost:1368/Ravinderrrrr/products.aspx

MySearchoial - [

Speciality industri
e =
Speciality Industripiey

Greases

Anaerobic and

cyanoacrylate |[om g

adhesives

Self adhesive tapelps

Spediality automob
products

Aerosol sprays :}
EXpoxy adhesives:}

Construction solu! ’

Others :}

Item 4

signin
E-mail (usemame;

[C] Stay signedin
Sign in

Reqgister as a customer
Fortgat your password?

76 |Page

Click here to buy this product

Pro25 Anfiseize spray

Price excluding VAT: Mot Specified

Click here to buy this product

Pro24 Antispatter spray

Price excluding VAT Not Spe

Click here to buy this product

Cleaner & deqreaser spray

Snapshot : 4

AR ¥ @

Get M Player Plugin

ustomer
ucts that

024aM | |

4/23/2014

Side bar menu for the viewing the products is also available having a drop down list for the

product to search the product under particular category.

™ Firefox - | g "\ucaIhost:138”.inderrrreroma‘aspx| + |
€& | @ localhost:1388, Ravinderr/Home.asp A B & A&

) Jﬂ - [ERin+ . u B Bo Best shopping dea\s\wlwl
>

| § =S

= -

My Searchoiat

Excellent Solution For Your Business

Speciality industrit} Hydraulic oil L ESS LUBE T-68 fled under templates, intemet
oils

Speciality Industrlt}

Greases

HLP-68 ww

Anaerobic and

cyanoacrylate :}

adhesives

Self adhesive tapeh:]

Speciality automobi
products

Aerosol sprays :}
Expoxy adhesives:}
Construction snlum GEnBd iRl
Others D

Item 4

dkfhdsufiojdifdjkvjkijfizafd

signin

| our Company Details

10:32 AM I

Snapshot : 5
The registered customer can give the feedback on the feedback page and this will be sent to

the owner e-mail from where he can check the details.
e e — I_

& @ localhost inderrrrr/feedback.aspx Al B ¥ A&

E MySearchoial - [ﬂ - ERin)v . u D B © sest shopping deals [NERE ck

GENERAL FEEDBACK
REPORT BUG
SUGGEST AN IDEA
EMAIL

PHONE NUMBER

, 10z7am [
4/23/2014

Snapshot : 6
If the customer want that owner will contact that particular person then the customer can give

his contact information on the contact us page.

77| Page

[Firefox | [T —————— =%

€ | @ localhost1388/Ravinderrrrr/ Contactus.aspx @ || O - Mysearchdial PlE- & &
== - MySearchioial - [&+ G LS [§8 L)) B © sestsnopping decls [ISV0UPE SloWAGIER || Get Media Player Plugin

ST —— Contact Us

oils

Speciality Industripiery

Greases Full name:

Email:

Anaerobic and

cyanoacrylate D

adhesives

Self adhesive tapefes

Speciality automopd
st =3

Aerosol sprays b= 4
Expoxy adhesives|oe §

Construction solu! I

Others =]

Item 4

Enter the code shown above:

Signin

E-mail (username
Password

[F stay signed in

. 1031am | |
4/23/2014

Snapshot : 7

11. SOURCE CODE

HOME PAGE

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="Home.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">
<div class="article">
<h2>Excellent Solution For Your Business</h2>
<p class="infopost">Posted on 11 sep 2018 by Admin | Filed under templates, internet 11l</p>
<div class="clr"></div>
<div class="img"><img src="images/imgl.jpg" width="619" height="188" alt=""
class="f1" /></div>
<div class="post_content">
<p>dkfhdsufiojdkfldjkvjkljf;1lzafd</p>
<p>dshdlisjdklasjlk</p>
<p class="spec">Read more »</p>
</div>
<div class="clr"></div>
</div>
<div class="article">
<h2>our Company Details</h2>
<p class="infopost">afaf dateeeeeeeeeee by dsfds | Under Construction <a href="#"
class="com"></p>

78 |Page

<div class="clr"></div>
<div class="img"><img src="images/img2.jpg" width="619" height="188" alt
class="f1" /></div>
<div class="post_content">
<p>asdasdsadas</p>
<p>dsasadadadasdasdas</p>
<p class="spec">Read more »</p>
</div>
<div class="clr"></div>
</div>
<p class="pages"><small>Page 1 of 2</small> 1 2
»</p>

</asp:Content>

PRODUCT PAGE

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="Product.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">
<hl><asp:Literal ID="1tProductName" runat="server"></asp:Literal></h1l>

<asp:Literal ID="1tDescription" runat="server"></asp:Literal>

Price excluding VAT: <asp:Literal ID="1tPriceExSaleTax" runat="server"
></asp:Literal>

Sale tax (VAT %): <asp:Literal ID="1tSaleTax" runat="server"></asp:Literal>
(<asp:Literal ID="1tSaleTaxPercent" runat="server"></asp:Literal>)

Price including VAT: <asp:Literal ID="1tTotalPrice" runat="server"></asp:Literal>

Quantity: <asp:TextBox ID="txtQuantity" Width="5@px" runat="server"
Text="1"></asp:TextBox> <asp:Button ID="btnBuy" runat="server" Text="Buy"
OnClick="btnBuy_Click" />

<asp:HiddenField ID="HiddenProductID" runat="server" />

</asp:Content>

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="products.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">
<div class="extra">
<h1>Welcome to Sk Enginnering</hl>
We have one customer with the username of "info@customer.com" and a password
of "customer” and a second customer
with the username of "go@customer.com" and a password of "customer". Here
below are
a page lised of the products that this webshop sells and you have to click on
one product to view it and to
buy units of this product.

<asp:Datalist ID="ProductListRepeater" runat="server" RepeatColumns="3"
RepeatDirection="Horizontal">
<HeaderTemplate>
<table border="0" width="570px" cellpadding="0" cellspacing="0">
</HeaderTemplate>

79| Page

<itemtemplate>
<tr>
<td style="width:30%; font-weight:bolder; background-
color:Silver"><asp:HyperLink ID="1tProductID" runat="server"
Text="<%#DataBinder.Eval(Container.Dataltem, "ProductID")%>'
NavigateUrl="'<%#GenerateURL(Eval("ProductID"))%>"'></asp:HyperLink></td>
<td style="width:70%; font-weight:bolder; background-
color:Silver"><asp:HyperLink ID="1tProductName" runat="server"
Text="<%#DataBinder.Eval(Container.Dataltem, "ProductName")%>'
NavigateUrl="<%#GenerateURL(Eval("ProductID"))%>'></asp:HyperLink></td>
</tr>
<tr>
<td colspan="2">
<asp:Literal ID="1tDescription" runat="server"
Text="'<%#DataBinder.Eval(Container.Dataltem, "Description")%>'></asp:Literal>

Price excluding VAT: <asp:Literal ID="1tPriceExSaleTax"
runat="server" Text='<%#DataBinder.Eval(Container.Dataltem,
"PriceExSaleTax")%>'></asp:Literal>

<%-- Sale tax (VAT %): <asp:Literal ID="1tSaleTax"
runat="server" Text='<%#DataBinder.Eval(Container.Dataltem,
"SaleTaxMoney")%>"'></asp:Literal> (<asp:Literal ID="1tSaleTaxPercent" runat="server"
Text="<%#DataBinder.Eval(Container.Dataltem, "SaleTaxPercent",
"{0:P}")%>"'></asp:Literal>)

Price including VAT: <asp:Literal ID="1ltTotalPrice"
runat="server" Text='<%#DataBinder.Eval(Container.Dataltem,
"TotalPrice")%>"'></asp:Literal>
--%>

<asp:HyperLink ID="hplLinkToProduct" runat="server"
NavigateUrl="'<%#GenerateURL(Eval("ProductID"))%>'>Click here to buy this
product</asp:HyperLink>

</td>
</tr>
</itemtemplate>
<FooterTemplate>
</table>
</FooterTemplate>
</asp:DatalList>
<asp:HyperLink id="1lnkPrev" Visible="false" runat="server"
Text="Previous"></asp:HyperLink>
<asp:Label id="1blCurrentPage" runat="server" />
<asp:HyperLink id="1lnkNext" Visible="false" runat="server"
Text="Next"></asp:HyperLink>

</div>
</asp:Content>

PRODUCT CART PAGE

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="Productscat.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">

<asp:Datalist ID="DatalListl" runat="server" CellPadding="4"

DataKeyField="ProductID" DataSourceID="SqlDataSourcel” ForeColor="#333333"
Width="470px">
<AlternatingItemStyle BackColor="White" ForeColor="#284775" />
<FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />

80|Page

<HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
<ItemStyle BackColor="#F7F6F3" ForeColor="#333333" />
<ItemTemplate>
ProductID:
<asp:Label ID="ProductIDLabel" runat="server" Text='<%# Eval("ProductID")
%>" />

ProductName:
<asp:Label ID="ProductNamelLabel" runat="server"
Text="<%# Eval("ProductName") %>' />

PriceExSaleTax:
<asp:Label ID="PriceExSaleTaxLabel" runat="server"
Text="<%# Eval("PriceExSaleTax") %>' />

<asp:HyperLink ID="hplLinkToProduct" runat="server"
NavigateUrl="'<%#GenerateURL(Eval("ProductID"))%>"'>Click here to buy this
product</asp:HyperLink>

</ItemTemplate>
<SelectedItemStyle BackColor="#E2DED6" Font-Bold="True" ForeColor="#333333" />
</asp:DatalList>
<%--<asp:DetailsView ID="DetailsViewl" runat="server" Height="184px"
Width="461px" AutoGenerateRows="False" CellPadding="4" DataKeyNames="ProductID"
DataSourceID="SqglDataSourcel” ForeColor="#333333" GridLines="None">
<AlternatingRowStyle BackColor="White" ForeColor="#284775" />
<CommandRowStyle BackColor="#E2DED6" Font-Bold="True" />
<EditRowStyle BackColor="#999999" />
<FieldHeaderStyle BackColor="#E9ECF1" Font-Bold="True" />
<Fields>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
ReadOnly="True"
SortExpression="ProductID" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:BoundField DataField="PriceExSaleTax" HeaderText="PriceExSaleTax"'
SortExpression="PriceExSaleTax" />
</Fields>
<FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
<HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
<PagerStyle BackColor="#284775" ForeColor="White" HorizontalAlign="Center" />
<RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
</asp:DetailsView>--%>

<asp:SqlDataSource ID="SqlDataSourcel" runat="server"

ConnectionString="<%$ ConnectionStrings:ConnectionString %>"

SelectCommand="SELECT [ProductID], [ProductName], [PriceExSaleTax] FROM [Products]
WHERE ([cat] = @cat)">

<SelectParameters>

<asp:QueryStringParameter DefaultValue="string" Name="cat"
QueryStringField="cat" Type="String" />

</SelectParameters>

</asp:SqlDataSource>

</asp:Content>

REGISTERATION PAGE

8l|Page

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="Register-customer.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">
<asp:Panel ID="CurrentPanel" runat="server" Visible="true">
<h1>Create a customer account</hl>
This form is used to register a user in the "Customers" table with username and
password. The password is encrypted with
SHA1 and stored as an encrypted password in the "Customers" table. Your account is
created when you click the
"Sign in" button and you then get a confirmation message when the "ThankYouPanel" gets
visible.

<table width="704">
<tr>
<td style="width: 2@0px">
E-mail:</td>
<td style="width: 254px">
<asp:TextBox id="txtUserName" runat="server"
Width="95%"></asp:TextBox></td>
<td style="width: 250px">
<asp:RequiredFieldValidator id="EmailRequired" runat="server"
ControlToValidate="txtUserName"
Display="Dynamic" ErrorMessage="* A valid email must be entered"
Width="216px" ValidationGroup="RegisterCustomer">* A valid email must be
entered</asp:RequiredFieldvalidator></td>
</tr>
<tr>
<td style="width: 200px">Password:</td>
<td style="width: 254px">
<asp:TextBox id="txtPassword" textmode="Password" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
<asp:RequiredFieldValidator id="PasswordRequired" runat="server"
controltovalidate="txtPassword"
errormessage="* Password must be entered"
validationgroup="RegisterCustomer" display="Dynamic" width="216px">* Password must be
entered</asp:RequiredFieldvalidator></td>
</tr>
<tr>
<td style="width: 2@0px">Confirm password:</td>
<td style="width: 254px">
<asp:TextBox ID="txtConfirmPassword" textmode="Password" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
<asp:RequiredFieldValidator id="PasswordConfirmRequired" runat="server"
controltovalidate="txtConfirmPassword"
errormessage="* Password must be entered"
validationgroup="RegisterCustomer" display="Dynamic" width="216px">* Password must be
entered</asp:RequiredFieldvalidator>
<asp:CompareValidator id="ComparePassword" runat="server"
controltocompare="txtPassword"
controltovalidate="txtConfirmPassword" errormessage="* Passwords do
not match"
width="216px"
validationgroup="RegisterCustomer"></asp:CompareValidator></td>
</tr>
<tr>
<td style="width: 200px">Company/Name:</td>

82|Page

<td style="width: 254px">
<asp:TextBox id="txtCompanyName" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
<asp:RequiredFieldValidator ID="CompanyRequired" runat="server"
controltovalidate="txtCompanyName"
display="Dynamic" errormessage="* Company / Name must be entered"
width="216px" validationgroup="RegisterCustomer">* Company / Name must be
entered</asp:RequiredFieldvalidator></td>
</tr>
<tr>
<td style="width: 200px">Organization number:</td>
<td style="width: 254px">
<asp:TextBox id="txtOrganisationNumber" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">Contact:</td>
<td style="width: 254px">
<asp:TextBox id="txtContact" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">
C/0 or attention:</td>
<td style="width: 254px">
<asp:TextBox id="txtAttention" runat="server'
width="95%"></asp:TextBox></td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 2@0px">
Box or street address:</td>
<td style="width: 254px">

<asp:TextBox ID="txtAdress" runat="server" width="95%"></asp:TextBox></td>

<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">Postal Code:</td>
<td style="width: 254px">
<asp:TextBox id="txtPostalCode" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 2@0px">City:</td>
<td style="width: 254px">

<asp:TextBox id="txtCity" runat="server" width="95%"></asp:TextBox></td>

<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">Country</td>
<td style="width: 254px">

83|Page

<asp:TextBox id="txtCountry" runat="server"
width="95%"></asp:TextBox></td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">
</td>
<td style="width: 254px">
</td>
<td style="width: 250px">
</td>
</tr>
<tr>
<td style="width: 200px">
</td>
<td style="width: 254px">
<asp:Button id="btnRegister" runat="server" text="Register
validationgroup="RegisterCustomer"” OnClick="btnRegister_Click" /></td>
<td style="width: 250px">
<asp:Label id="SqlEx" runat="server" forecolor="Red"
width="216px"></asp:Label></td>
</tr>
</table>
</asp:Panel>
<asp:Panel ID="ThankYouPanel" runat="server" Visible="false">
<h1>Thank you</h1>
Thank you for register with us.

</asp:Panel>
</asp:Content>

SHOPPING CART PAGE

<%@ Page Title="" Language="C#" MasterPageFile="~/MasterPage2.master"
AutoEventWireup="true" CodeFile="Shopping-cart.aspx.cs" Inherits="Default2" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="head" Runat="Server">
</asp:Content>
<asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolderl" Runat="Server">
<h1>Shopping cart</hl>
We use a repeater control to build our shopping cart and we fill the shopping cart
with data from the "Products" table
when this page loads by using data in the HttpCookie as parameters to select rows from
the table. We have
added EnableViewState="false" for the "Quantity" textbox in the repeater control so
that it is possible to change
this value in an update of the cart.

<asp:Repeater ID="CartRepeater" runat="server"
OnItemCommand="CartRepeater_ItemCommand">
<HeaderTemplate>
<table border="0" width="600px" cellpadding="1" cellspacing="0" style="border:
solid 1px silver">
<tr style="background-color:Silver">
<th>Product #</th>
<th>Product name</th>
<%-- <th>VAT %</th>--%>
<th>Quantity</th>

84|Page

<th>Product Price</th>
<th></th>
</tr>
</HeaderTemplate>
<ItemTemplate>
<tr>
<td><asp:Literal ID="1tProductID" runat="server"
Text="<%#DataBinder.Eval(Container.Dataltem, "ProductIDC")%>'></asp:Literal></td>
<td><asp:Literal ID="1tProductName" runat="server"
Text="<%#DataBinder.Eval(Container.DataItem, "ProductName")%>'></asp:Literal></td>
<%--<td><asp:Literal ID="1tVAT" runat="server"
Text="<%#DataBinder.Eval(Container.DataItem, "SaletaxPercent")%>'></asp:Literal></td>-
-%>
<td><asp:Textbox ID="txtQuantity" EnableViewState="false" Width="50px"
CssClass="textbox" runat="server" Text='<%#DataBinder.Eval(Container.DataItem,
"QuantityC")%>'></asp:Textbox></td>
<td><asp:Literal ID="1tPrice" runat="server"
Text="<%#DataBinder.Eval(Container.Dataltem, "PriceExSaleTax")%>'></asp:Literal></td>
<td><asp:LinkButton ID="btnRemove" runat="server" Text="X"
CommandArgument="<%# Bind("ProductIDC") %>' /></td>
</tr>
</ItemTemplate>

<FooterTemplate>
</table>
</FooterTemplate>
</asp:Repeater>

<table border="0" width="600" cellpadding="1" cellspacing="0">
<tr>
<td style="text-align:right;">
Sum excluding VAT: <asp:Label ID="1blPriceTotal" runat="server" Font-Bold="true"
Text=""></asp:Label>

<%-- VAT in total: <asp:Label ID="1lblVatTotal" runat="server" Font-Bold="true"
Text=""></asp:Label>
--%>
Totalsum: <asp:Label ID="1blTotalSum" runat="server" Font-Bold="true"
Text=""></asp:Label>
</td>
</tr>
</table>
<asp:Button ID="btnUpdateCart" runat="server" Text="Update cart"
OnClick="btnUpdateCart_Click" />
<asp:Button ID="btnCheckOut" runat="server" Text="Check out"
OnClick="btnCheckOut_Click" />

<asp:Panel ID="CheckOutPanel" runat="server" Visible="false">
<h1>0Order information</h1>
We select the order information data from the "Customers" table when the user has
clicked the
"Check out" button and this data can be changed. When the user clicks the "Send
order" button
there is code to save the order in the "Orders" table and to save the orderrows in
the
"OrdersProducts" table.

<table border="0" width="600" cellpadding="1" cellspacing="0">
<tr>
<td>Company/Name:</td>
<td><asp:TextBox ID="txtCompany" runat="server" Width="200px"></asp:TextBox></td>
</tr>
<tr>
<td>ID Number:</td>
<td><asp:TextBox id="txtOrganisationNumber" runat="server"
Width="200px"></asp:TextBox></td>

85|Page

</tr>

<tr>

<td>Contact:</td>

<td><asp:TextBox id="txtContact" runat="server" Width="200px"></asp:TextBox></td>

</tr>

<tr>

<td>Attention:</td>

<td><asp:TextBox id="txtAttention" runat="server"
Width="200px"></asp:TextBox></td>

</tr>

<tr>

<td>Adress:</td>

<td><asp:TextBox ID="txtAdress" runat="server" Width="200px"></asp:TextBox></td>

</tr>

<tr>

<td>Postal code:</td>

<td><asp:TextBox id="txtPostalCode" runat="server"
Width="200px"></asp:TextBox></td>

</tr>

<tr>

<td>City:</td>

<td><asp:TextBox id="txtCity" runat="server" Width="200px"></asp:TextBox></td>

</tr>

<tr>

<td>Country:</td>

<td><asp:TextBox id="txtCountry" runat="server" Width="200px"></asp:TextBox></td>

</tr>

</table>

<asp:Button ID="btnOrder" runat="server" Text="Send order"
OnClick="btnOrder_Click" />

</asp:Panel>

<asp:HiddenField ID="HiddenCustomerID" runat="server" />

</asp:Content>

12. BIBLIOGRAPHY

Here I would like to mention the name of the books and URLs used for reference while

designing, testing, implementation, and coding of the system:-

1. www.google.co.in

2. Software Engineering - A practitioner's approach

86|Page

IMDIG S LARGEST UHIVEDSITY %
EOVELY
EROFESIONAL

Discipline:

PROJECT TOPIC APPROVAL PERFORMA

GROUP NO. COURSE CODE:-
SR.NO. | NAME OF REGISTRATION | BATCH SESSION PARENT CURRENT ROLLNO.
STUDENT NO. SECTION SECTION
1 " 2honvial 10001532 610 —
! ’C»Tehon 2014 Kioo ¢ 0l
2 PEELL
= 0 20\0 -
rJaidka l1000236 Wiy Kloo 6 02
| 3 Hanpreer |110Q 9 3
il)00 6 0
Kawy 201Y q
4 I Kowi nden I | O :
ol [2et0- K100 6 05
kawt 2014
5
Details of Supervisor: Designation: .. W
9/
Name —fl:d,([06\. Qualification: ... g"‘ Lo

i u.ID. .’ 5-‘?? | Research Experience: ..

PROPOSER TOPICS

T Live. Webalte (m)i; fn{il A}ﬂbm&h@n 6l Business
Becomod bbbttt

: : (PO*THL\ ag%lﬁfﬂ
I eSS

*Guide should finally encircle one topic out of three proposed topics and put up for approval before Project |
Committee (PAC)

*Original copy of this format after PAC approval will be retained by the student and must be attached in the
Project/Dissertation synopsis and final report.

*One copy to be submitted to Supervisor.

\

APPROVAL OF PAC CHAIRPERSON: Signature

87|Page

